### RED HILL VALLEY PARKWAY INQUIRY

# AFFIDAVIT OF BYRDENA MACNEIL (affirmed March 15, 2023)

- I, BYRDENA MACNEIL, of the City of Hamilton, Ontario, in the Province of Ontario, MAKE OATH AND SAY:
- 1. I was a Solicitor in the Legal & Risk Management Services Department ("Department") in the Corporate Services Division with the City of Hamilton ("City") from April 2006 until December 2020. As such I have knowledge of the matters set out below, except where this knowledge is based on information and belief, in which case I state the source of that information and verily believe it to be true. This affidavit is based on my recollection of events and my review of records provided to me through the Inquiry process.
- 2. In my role as a Solicitor at the City, I worked within the Dispute Resolution section and reported to the Deputy City Solicitor (Dispute Resolution), Ron Sabo. I worked on a variety of litigation matters other than personal injury litigation (which I did not work on beyond my first few years at the City), and also provided general legal advice to other City departments, referred to as "client departments". I was one of two or three lawyers at the City who handled files relating to freedom of information ("FOI") requests pursuant to the *Municipal Freedom of Information and Protection of Privacy Act* that required more legal involvement. My involvement with FOI requests was typically to assist client departments to prepare submissions to the Access & Privacy Office, including providing

information on potential exemptions or answering questions raised by the Access & Privacy Office. The Access & Privacy Office is ultimately responsible for determining whether responsive records are released to requestors.

- 3. To the best of my recollection, I did not have carriage of any Red Hill Valley Parkway ("RHVP")-related litigation or other files prior to November 2018. I do not recall having any other involvement in such litigation prior to November 2018. I was aware of RHVP-related litigation based on informal discussions with other Solicitors in Dispute Resolution and through media coverage, but I did not have detailed information regarding any claims.
- 4. Throughout my involvement set out below, I was focused on giving advice in respect of the response to an FOI request that was identified as FOI 18-189. Although I came to understand that the release of the Tradewind Report through FOI 18-189 may pose liability or reputational impacts for the City, I did not view my role as giving advice on those issues. I understood the consequences of the release of the Tradewind Report were being handled by those senior to me in the Department, and by Public Works and other senior staff. I also understood that any assessments of possible safety issues arising from the content of the Tradewind Report and Golder Report were not my responsibility and were being handled by Public Works staff.

#### Initial Contact Regarding FOI 18-189

5. I first became aware of an FOI request relating to friction and asphalt testing on the RHVP ("FOI 18-189") at or around the time I received an email from Mr. Sabo regarding FOI 18-189 on November 9, 2018 (HAM0061832 0001). Around the same time

when I received Mr. Sabo's email, Mr. Sabo came to my office and advised me that there was an FOI request for which my assistance would be needed. I do not recall him providing me with any details regarding the FOI request at the time. I understood from Mr. Sabo's email that Gord McGuire was anxious about FOI 18-189, but I did not receive further information about the reason for his anxiety at the time.

- 6. I recall having a brief conversation with Debbie Edwards, Deputy City Solicitor (Commercial, Development and Policy), regarding FOI 18-189 (and emails I have reviewed indicate this occurred on or about November 12, 2018) but do not have a specific recollection of the details of that discussion. I understood from Ms. Edwards that Mr. McGuire had initially contacted her regarding FOI 18-189, and that he was anxious about it. I do not recall being provided with any additional details regarding Mr. McGuire's anxiety or the nature of FOI 18-189 at this time. Based on my practice regarding FOI requests, I likely asked Ms. Edwards if she had any documents that I should review, but I do not have a specific recollection of this discussion (HAM0062475 0001).
- 7. I do not recall being told by Ms. Edwards or Mr. Sabo that either of them had previously spoken with Mr. McGuire regarding the RHVP in October 2018.
- 8. Before receiving any documents relating to FOI 18-189, I believe I received a copy of the information sheet describing what documents were being requested. I did not understand initially that there was any particular significance to FOI 18-189 and expected my involvement to be typical to other FOI requests that I assisted with (i.e., to assist the client department to prepare the submission to the Access & Privacy Office, including identifying potential exemptions).

- 9. I believe I first received and reviewed documents relating to FOI 18-189, including the Tradewind Report, when they were sent to me by Mr. McGuire on November 11, 2018 (HAM0027442\_0001, attaching HAM0027443\_0001, HAM0027444\_0001, HAM0027445\_0001, HAM0027446\_0001, HAM0027447\_0001, HAM0027448\_0001, HAM0027449\_0001, HAM0027450\_0001, HAM0027451\_0001, HAM0027452\_0001, HAM0027453\_0001, HAM0027454\_0001, HAM0027455\_0001, HAM0027456\_0001 and HAM0027457\_0001). I do not recall when I first spoke to Mr. McGuire regarding the RHVP, including whether it was before or after I received the initial set of documents on November 11, 2018.
- 10. I first received a document titled "Red hill review GMC Summary.doc", which was a summary and chronology of issues relating to the RHVP ("GMC Summary"), as part of the email from Mr. McGuire (HAM0027452\_0001). Reviewing the GMC Summary provided me with further context regarding Mr. McGuire's anxiety relating to the FOI request. I understood Mr. McGuire to be concerned that the Tradewind Report seemed to differ from what Council, the Hamilton Spectator, and the public had previously been told regarding the RHVP, and from what he himself previously understood. I do not recall if Ms. Edwards previously provided me this information, or if I was otherwise aware before reviewing the GMC Summary.
- 11. I do not have a recollection of my first meeting with Mr. McGuire regarding the RHVP, or whether it occurred on November 12, 2018 (HAM0061834\_0001).
- 12. I do not recall attending a meeting on November 13, 2018, with Mike Zegarac, Dan McKinnon and Mr. Sabo, for which I received a calendar invite with the subject line

"URGENT - Mike Zegarac / Dan McKinnon / Ron Sabo / Byrdena MacNeil re MFIPPA re Expressway" (HAM0061981\_0001). I would not typically be included or expect to be included in meetings of this nature, since Mr. Zegarac, Mr. McKinnon and Mr. Sabo were more senior than me. I would typically only be included in such meetings if they required information from me.

- 13. Shortly after reviewing the Tradewind Report, I formed the view that the Tradewind Report was likely to be disclosed pursuant to FOI 18-189 because I did not think that there would likely be any successful exemptions to its disclosure. However, I wanted to gather more information to confirm my understanding and advice on whether the Tradewind Report would need to be disclosed.
- 14. While working on FOI 18-189, I was cognisant of the need to keep Mr. Sabo aware and up to date regarding its status. I did so because of the sensitivity of the file, and because the Tradewind Report may have an impact on the City's liability, in light of the positions the City had previously taken or information that it had previously released regarding the RHVP. I also wanted to update Mr. Sabo because I knew he was involved in discussions with more senior City staff in which I did not participate. I did not see Mr. Sabo every day, so my practice was to forward and send him emails to keep him updated.
- 15. My assistant, Pam Delry, opened a file related to FOI 18-189 on November 20, 2018. It was assigned matter number 18-1054 ("Matter 18-1054"), which was separate from the work Ms. Auty and Mr. Sabo were undertaking related to liability or reputational concerns regarding the RHVP. I have attached to my affidavit the file opening sheet prepared by my assistant for Matter 18-1054 as **Exhibit A** (HAM0064436 0001). My

practice at the time, as I recall, was to have a separate subfolder within my electronic files on the City's server where I stored documents for each matter to which I was assigned. I also had designated filing cabinets for hard copy documents.

16. Each lawyer in the Department had their own separate electronic storage system on the City's server. I did not use my electronic storage system communally or collaboratively, except my assigned law clerk and legal assistant would access it, as needed; if I was working with another lawyer on a particular matter or document, we used our respective storage systems to work on and save documents, and used email to transmit and share documents with one another. For example, Mr. Sabo and Ms. Auty would not have used my subfolder for Matter 18-1054 to save their own documents or emails, even for work related to the RHVP or FOI 18-189. While I do not recall if we could access the electronic storage systems of other lawyers in the Department, it was not typical practice to do so.

#### Request for Extension for Response to FOI 18-189

- 17. I generally recall having discussions with Mr. McGuire about needing an extension to respond to FOI 18-189. I understood that an extension was needed because the Access & Privacy Office had given a short time frame to respond to the request, and additional time would be needed to locate, review and discuss potentially responsive documents.
- 18. Shortly after I became involved, I called Anne Watson in the Access & Privacy Office to discuss obtaining an extension, and she told me that the request for an extension should be put in writing. I recall having a discussion with Mr. McGuire about the written

request for an extension. Based on the language used in the written request Mr. McGuire submitted to Ms. Watson on November 14, 2018, I believe that it is likely that I either redrafted the written response Mr. McGuire sent me earlier the same day for my review or provided him with language to revise it before he provided it to the Access & Privacy Office (HAM0061982\_0001, HAM0061983\_0001, HAM0061851\_0001 and HAM0061852\_0001). I have attached to my affidavit the written request submitted to the Access & Privacy Office on November 14, 2018, as **Exhibit B** (HAM0061852\_0001).

- 19. I do not recall if at or around this time, November 14, 2018, Mr. McGuire and I discussed that the Tradewind Report applied a UK standard, but I recall that at some point Mr. McGuire raised with me that he understood that there was no Canadian friction standard.
- 20. I recall that at some point, Mr. McGuire advised me that consultants were performing ongoing work regarding the RHVP, but I do not recall if those discussions had occurred by November 14, 2018, or if Mr. McGuire provided me any details regarding the consultants and/or the nature of the work that was being undertaken.
- 21. I recall that Mr. McGuire had a scheduled vacation from November 15 to 26, 2018. I believe we spoke about FOI 18-189 prior to his vacation, but I do not recall the details of any such discussion(s). Emails I have reviewed indicate that I spoke to Mr. McGuire by phone on November 14, 2018, but I do not recall the details of what we discussed on this call (HAM0064447\_0001). I have attached to my affidavit a compilation of documents, including an email exchange I had with Mr. McGuire and Diana Cameron regarding the call on November 14, 2018 as **Exhibit C** (HAM0064447\_0001). While Mr. McGuire was

on vacation, I reviewed the documents I had been provided up to that time. I expected to receive additional documents upon his return.

# Contact with Risk Management and City Solicitors Regarding the Tradewind Report

- 22. I emailed John McLennan on November 13, 2018, attaching a copy of the Tradewind Report (HAM0053823\_0001 attaching HAM0053824\_0001). I contacted Mr. McLennan at that time because I knew there was or had been RHVP-related litigation and I expected that Mr. McLennan would be involved based on his role as Manager of Risk Management. I do not recall if I was aware if there was any ongoing litigation at that time. Though I do not recall the details of our discussion(s) regarding the Tradewind Report, I wanted Mr. McLennan to be aware of FOI 18-189, and recall telling him that I believed the Tradewind Report appeared responsive to the FOI request and would likely be released to the requestor.
- 23. I do not recall if on or around November 13, 2018, I had spoken to Mr. McLennan about whether the Tradewind Report was included in any affidavits of documents that had been produced in any RHVP-related claims. I recall generally around that time that Mr. McGuire and I were trying to reach out to staff who might have had more information about the Tradewind Report, particularly because the Tradewind Report had been attached to the Golder Report, which I had noted was marked with a draft stamp. I wanted to ensure we were making informed decisions, and we did not know if the Golder and Tradewind Reports were previously produced in litigation, if they were finalized or if there was any subsequent friction testing. I was trying to collect all that information, both through Mr. McGuire, as well as through my own inquiries in the Department, to understand the history of the Tradewind and Golder Reports. I have a general recollection

of speaking to Mr. McLennan about this at some time, but do not recall the details of that discussion or when it occurred.

- 24. I do not recall my initial discussion with Nicole Auty about the FOI request, the Tradewind Report or RHVP-related issues. I recall that at some point, I went to Ms. Auty's office and told her that there was a report that was likely to be released via an FOI request, and that the report may not be in line with what I understood that Council, the public and other City employees may have been led to believe (that is, that there was no problem with the safety of the RHVP's asphalt). I did not report directly to Ms. Auty, and do not recall why I spoke to her on that occasion. Based on my practice, I would not have spoken with Ms. Auty unless Mr. Sabo directed me to do so, Mr. Sabo was unavailable, or Ms. Auty was already involved in the file and had instructed me to keep her updated.
- 25. At some time prior to December 3, 2018, I recall Ms. Auty telling me that she understood Mr. Sabo and/or Mr. McLennan may have known about the Tradewind or Golder Reports, as they may have previously been produced in the course of litigation. I do not recall if I asked Ms. Auty, Mr. McLennan or Mr. Sabo what litigation they were referring to, and have no recollection of a discussion regarding any such litigation.
- 26. I recall speaking with Dana Lezau, one of the City Solicitors who handled RHVP-related litigation, at some time after speaking to Mr. McLennan; a review of the Inquiry's records shows my conversation with her was on or around December 7, 2018 (HAM0062010\_0001). I decided to first speak with Mr. McLennan, rather than other solicitors in the Department, as I thought it was best for him, Ms. Auty and/or Mr. Sabo to have initial contact with any of the lawyers involved in RHVP-related litigation, including

Ms. Lezau. I did so because I did not want to influence or impact anything related to the litigation. I spoke with Ms. Lezau because I learned that she had recently completed discoveries in an RHVP-related claim. Following our discussion, I reviewed the affidavit of documents in that matter because I wanted to know what documents were produced for two reasons. I wanted to know if the Tradewind Report was produced in that matter, as this would be relevant in determining whether the Tradewind Report should be disclosed pursuant to FOI 18-189. I also wanted to see if there were any additional records that may be responsive to FOI 18-189. The Tradewind Report was not included in those productions. I did not have further discussions with Ms. Lezau to confirm why it had not been.

- 27. I have no independent recollection of the contents of the affidavit of documents that I reviewed following my discussion with Ms. Lezau. If, as had been suggested to me, HAM0064439\_0001 and HAM0064440\_0001 comprise Marco Oddi's May 3, 2018 affidavit of documents in the Hansen v. Bernat matter, I assume that was the affidavit of documents that I reviewed. I would have asked Ms. Lezau if I could review Mr. Oddi's affidavit of documents, but apart from that, I do not recall how I came to obtain it from Ms. Lezau. I do not recall when I first reviewed it, nor do I recall if I reviewed all of the documents in the affidavit of documents in detail. I have attached to my affidavit a copy of HAM0064439\_0001 and HAM0064440\_0001, which I reviewed in preparation of this affidavit, as Exhibits D and E.
- 28. I did not have similar discussions with Daniell Bartley, another City Solicitor who handled RHVP-related litigation or Shillingtons, one of the firms acting as the City's

external legal counsel, while I was trying to identify relevant documents for FOI 18-189. I do not have a recollection of any discussions with Mr. Bartley or Shillingtons related to the RHVP. I do not recall if I was aware that Shillingtons, or external legal counsel more generally, had a copy of the Tradewind Report before my review of documents in preparation for this Inquiry.

- 29. In preparing this affidavit, I have been asked whether I considered if any documents in the affidavit of documents other than the 2013 CIMA Report ought to have been included in response to FOI 18-189. I have no recollection of reviewing the staff reports addressed to the Mayor, the Council or the Public Works Committee, including a March 24, 2017 report submitted by Martin White (HAM0064440\_0001 at images 126-128) and a May 19, 2017 report submitted by John Mater (HAM0064440\_0001 at images 152-156). I do not recall noting that both of those reports marked "Conduct Pavement Friction Testing" as having been completed. I do not recall being aware of that information from any source other than Mr. Oddi's affidavit of documents. I further do not recall Mr. McGuire or anyone else informing me that Council had been advised in 2017 that friction testing had been completed after December 2015.
- 30. Any public staff reports to Council or to the Public Works Committee would already have been available to the public without an FOI request. However, I did note to Mr. McGuire in my email to him of December 16, 2018 at 9:38 PM (HAM0053999\_0001), and in Note 2 at the bottom of the FOI #18-189 Index Identifying Possible MFIPPA Exemptions chart (HAM0062021\_0001), that his office should collect and send any Committee and Council reports dealing with (i) friction of RHVP (2013-2018) and (ii)

asphalt and/or pavement of RHVP (2016-2018) to Anne Watson in response to FOI 18-189. I do not recall discussing this with anyone. Although my December 10, 2018 (12:17 PM) email to Nicole Auty, Ron Sabo and John McLennan indicates that I had some type of discussion with Mr. McGuire, what is written in the emails constitutes my past recollection recorded (HAM0062010\_0001).

31. I do not recall providing the affidavit of documents to Mr. McGuire or anyone else.

#### December 3, 2018 Meeting

- 32. I recall meeting with Mr. McGuire and Ms. Cameron in Mr. McGuire's office on December 3, 2018. It is the first substantive discussion I recall having with Mr. McGuire regarding the RHVP. By this time, Mr. McGuire had provided me with the materials he had collected to date, and I had reviewed the materials I had been given. The purpose of the meeting was to discuss the documents and their significance, as well as to understand what was still outstanding before Mr. McGuire could submit his response to the Access & Privacy Office.
- 33. I recall that Ms. Cameron took notes. Through the Inquiry's process, I learned the meeting was recorded, but at the time of the meeting, I was not aware it was being recorded.
- 34. My primary contact in Public Works was Mr. McGuire. I do not recall if I had spoken to Mr. McKinnon or Mr. Zegarac by the time of this meeting on December 3, 2018. I considered Mr. McGuire to be my "client", the person giving me instructions and the person I was advising in respect of FOI 18-189. I do not recall having any communications with Mike Becke, from whom Mr. McGuire was also seeking documents that could

potentially be responsive to FOI 18-189. I offered to contact Mr. Becke regarding obtaining the applicable materials but did not do so because Mr. McGuire did not ask me to. I do not recall contacting Edward Soldo or others in Public Works about FOI 18-189, as Mr. McGuire knew the relevant individuals and was able to provide me the necessary information.

- 35. I do not recall whether Mr. McGuire or I first identified the Tradewind Report, the Golder Report, the 2015 CIMA Report and the November 28, 2018 email from Dr. Uzarowski to Mr. McGuire as the "key reports" as referred to during and after the December 3, 2018, meeting.
- 36. I do not believe I was aware of the 2013 CIMA Report at the time of the December 3, 2018 meeting, and do not recall it being discussed during the meeting. I believe I learned about the 2013 CIMA Report at some time later, when I reviewed the affidavit of documents for the file for which Ms. Lezau had completed discoveries (HAM0053999 0001).
- 37. I recall that Mr. McGuire told me that CIMA was doing some ongoing work for the City at this time, but I do not recall if I knew any details regarding this work. I would only have known whatever information Mr. McGuire provided me. I may have provided information regarding CIMA's ongoing work to Mr. Sabo and/or Ms. Auty, but do not recall any specific discussions regarding this.
- 38. During the December 3, 2018 meeting, Mr. McGuire explained to me that Golder had recommended microsurfacing in the Golder Report, but that it was not completed. I had reviewed the Golder Report and the GMC Summary before the December 3, 2018

meeting. However, I do not recall if, prior to the meeting, I had taken note that Golder had recommended microsurfacing as a possible way to address friction issues in the Golder Report.

- 39. During this meeting, Mr. McGuire also explained to me the concept of hot-in-place recycling and that the City had been considering using it, and expressed his confusion that this concept was considered given the concerns raised in the Tradewind Report about the quality of the material used. I do not recall whether I conveyed this information to Ms. Auty or Mr. Sabo after this meeting.
- 40. I do not recall if, after the December 3, 2018 meeting, I discussed Golder's 2014 microsurfacing recommendation or the City's assessment of hot-in-place recycling of the pavement materials with Ms. Auty and/or Mr. Sabo. I do not recall if I turned my mind at this time to any possible liability flowing from Golder's recommendation for microsurfacing. I was focused on my task, which was giving advice in respect of the response to FOI 18-189. I did not view myself to be the conduit of this information from Mr. McGuire to my colleagues in the Department. At this time, I understood that Public Works staff was addressing the safety of the RHVP.
- 41. I do not specifically recall discussions with Ms. Auty or Mr. Sabo about potential interim safety measures the City was implementing pending resurfacing. I recall thinking that potential interim safety measures was a topic that needed to be considered, and I may have discussed this with Ms. Auty and/or Mr. Sabo, but I have no specific recollections of doing so. Had I been concerned that there was an outstanding safety issue on the RHVP, I would have advised them of this, but I believed from my discussions

with Mr. McGuire that he and Public Works staff were handling the safety aspect of the RHVP. I was not asked for and did not give legal advice about the sufficiency of the steps Public Works staff were taking to assess the safety aspect.

- 42. I recall Mr. McGuire raising a potential conflict of interest resulting from the personal relationship between Brian Malone at CIMA and Betty Matthews-Malone who was previously a director at the City. I subsequently advised Ms. Auty and Mr. Sabo of this so that they were aware of the potential conflict (HAM0062010\_0001). The decision as to whether CIMA should continue to be involved in light of the potential conflict was to be made by someone other than me and I do not have further information about that.
- 43. I first learned that Public Works was going to be bringing other RHVP-related reports to Committee and Council during the December 3, 2018 meeting.
- 44. I do not recall if, by the time of this meeting on December 3, 2018, I had spoken to Ms. Auty and/or Mr. Sabo about informing Council about the Tradewind Report. My general understanding was that Council would need to be informed, and that decisions would need to be made about how best to inform Council. I was not responsible for such decisions. I believed that responsibility rested with Public Works, with input from others in the Department. My primary focus was the response to FOI 18-189. In my view, informing Council about the Tradewind Report was independent of responding to FOI 18-189, but I understood there was some overlap. Because of this overlap and so that a report to Council could be appropriately timed, I kept Mr. Sabo and Ms. Auty updated about the status of FOI 18-189 and expected that Mr. McGuire was doing the same with his superiors.

- 45. I was not involved in discussions that finally determined the timing to report to Council and understood that the decision was to be made by more senior staff such as Ms. Auty, Mr. Sabo, Mr. McKinnon and Mr. McGuire. I do not recall if Ms. Auty and/or Mr. Sabo conveyed any urgency regarding bringing the information to Council before materials were released pursuant to FOI 18-189. I felt everyone was respectful of the FOI process and understood that we were doing everything as quickly as we could.
- 46. I have a general recollection that the senior leadership team (i.e., Mr. Zegerac, Ms. Auty, Mr. Sabo and Mr. McKinnon) needed to know about the timing of the release of the materials pursuant to FOI 18-189 in the context of the timing of the disclosure to Council. Bringing a report to Council can take a substantial amount of work in terms of drafting and review, and also consideration to determine the appropriate meeting at which it is going to be presented. If I recall correctly, at that time, there was a new Council following the municipal election in October 2018, and that prior to the election there was a pause period which limited what could be brought before Council. This meant there were a lot of other reports lined up to go before the new Council. As of December 3, 2018, there were still many moving parts, and Mr. McGuire and I were still trying to piece information together while working on the response to FOI 18-189; in my view, a report disclosing the Tradewind Report to Council could not be brought to Council until we had more information.
- 47. Through my involvement in the response to FOI 18-189, I was trying to determine whether there was a final report (since the Golder Report was marked with a draft stamp) or some other answer regarding the information in the Tradewind Report. At some time,

I became aware that the Golder Report remained in draft and had not been finalized. I do not have a specific recollection of receiving this information, but expect that Mr. McGuire advised me of this. In my mind, although I was never advised of an explanation about why the Tradewind Report had not been previously brought to Council's attention, it needed to be brought to Council's attention in a timely way. If the information was going to be released via the FOI process, staff would want to present their report to Council as soon as possible so that Council members would not be in a position where they were reading about it for the first time in the newspaper.

- 48. I do not recall the details of any further discussion with Mr. McGuire at the end of the December 3, 2018 meeting after Ms. Cameron left the room (RHV0001011).
- 49. Following the December 3, 2018 meeting, Mr. McGuire and I were expecting to receive and review documents from Mr. Becke. I was tasked with preparing a summary of any exemptions that could apply, given the context, background and significance of the documents provided to me by Mr. McGuire as of that date. My focus was to complete my work on FOI 18-189 and provide it to Mr. McGuire before I took a previously scheduled personal leave of absence in mid-December 2018.
- 50. I do not have a specific recollection of my discussion with Ms. Auty on December 3, 2018, following my meeting with Mr. McGuire and Ms. Cameron (HAM0062483\_0001). I believe I updated Ms. Auty on that meeting because Mr. Sabo was on vacation at the time, so I was reporting to Ms. Auty directly regarding the status of FOI 18-189, and because I believed that Ms. Auty was already involved in the matter, given potential liability and sensitivity concerns.

## Discussions Regarding Safety of the RHVP

51. I understood that Mr. McGuire and Public Works staff were working on the safety of the RHVP as this was their responsibility and expertise. I understood from Mr. McGuire that Public Works staff were satisfied that the road was safe or that they were putting something in place to make sure it was safe in light of information contained in the Tradewind and Golder Reports. I do not have a specific recollection of the details of what measures were in place or were going to be in place to address safety. I believe that based on my practice in litigation, I likely asked Mr. McGuire if anything needed to be done to the road in the interim to ensure that the public was safe on the RHVP. I do not have a specific recollection of such a discussion or when it may have occurred, but I generally recall wanting to ensure that the road was safe, as I considered this to be something that needed to be addressed. I do not recall if I spoke to Ms. Auty or Mr. Sabo about what Mr. McGuire and Public Works were working on regarding safety.

#### Discussions Regarding Audit Services

- 52. I recall sometime prior to November 27, 2018, Mr. McGuire informed me that Audit Services was requesting documents for a value for money audit related to roads ("VFM Audit"), which would include documents related to the RHVP. I recall that Mr. McGuire was concerned because, around this time, we were in the process of responding to FOI 18-189, and we understood that RHVP-document requests had also been made by the Hamilton Spectator and a law firm.
- 53. At this time, I knew that Mr. McGuire and I each had a copy of the Tradewind Report, but I did not know if other City departments had a copy. I recall that we had some concern about giving another department a copy of the Golder Report, which appended

the Tradewind Report, as we did not want multiple copies of sensitive documents being distributed throughout the City when we were still working on responding to FOI 18-189 and were uncertain as to what the final response to FOI 18-189 would be. I suggested to Mr. McGuire that if he was concerned, he could take an approach I had used in the past for FOI requests involving sensitive documents, which was to make the original, unredacted copy of the document available for review in his office, but not to distribute an additional copy of it. I suggested this to Mr. McGuire because it would allow Audit Services to have access to the document, while limiting or containing the number of copies in circulation. I personally did not have much experience with Audit Services and was unfamiliar with its processes, and felt at this time that it was better to take this cautious approach. Ultimately, Mr. McGuire and/or Mr. McKinnon would decide how to respond to Audit Services. I do not believe that I spoke to Ms. Auty and/or Mr. Sabo before making this suggestion to Mr. McGuire.

I do not recall having any discussions with Mr. McGuire regarding the approach to Audit Services between November 27, 2018 and December 3, 2018. I did not perceive there to be any urgency in responding to Audit Services' request for documents, as I understood that the VFM Audit had been ongoing since May 2018 and did not believe that Audit Services was working to release a report imminently. I do not recall being aware that Public Works staff had provided a redacted copy of the Golder Report to Audit Services or of Audit Services' initial response until Mr. McGuire copied me onto an email chain on December 3, 2018 (HAM0061997 \_0001). I do not recall preparing the redacted copy of the Golder Report provided to Audit Services (RHV0001010). Upon learning that Audit Services wanted an unredacted copy of the Golder Report, I expected to discuss

my approach and thinking with Audit Services. I did not have an opportunity to do so because I understood that Audit Services had ultimately obtained an unredacted copy of the Golder Report.

- 55. On December 4, 2018, Mr. McGuire called me and left a voicemail, which I asked my assistant to transcribe (HAM0064415\_0001). I have attached to my affidavit the transcription of Mr. McGuire's voicemail, as **Exhibit F** (HAM0064415\_0001). The same day, Mr. McGuire advised me that Mr. Pellegrini attended his office and took an unredacted copy of the Golder Report. After I became aware of this, I advised Ms. Auty and Mr. Sabo. I do not recall the specifics of any discussion(s) I had with Ms. Auty and Mr. Sabo regarding this issue. I recall being concerned because I was unfamiliar with Audit Services' processes, and thought Ms. Auty and Mr. Sabo should be aware that this had created another avenue pursuant to which the Tradewind Report could be released.
- 56. I later came to understand that Ms. Auty and Mr. Sabo would not have been concerned about providing an unredacted copy of the Golder Report to Audit Services and would not have made the same suggestion to Mr. McGuire.

Meeting with Mr. Zegarac, Mr. McKinnon, Mr. McGuire, Mr. McLennan and Ms. Auty

57. I recall attending a meeting with Mr. Zegarac, Mr. McKinnon, Mr. McGuire, Mr. McLennan and Ms. Auty, which may have occurred on December 6, 2018. I do not recall if I attended more than one meeting with these individuals. My role at this meeting was to update the attendees regarding the status of FOI 18-189. I recall that one purpose of the meeting was to discuss the fact that another department, Audit Services, now had a copy

of the unredacted Golder Report, appending the Tradewind Report, and if any decisions needed to be made regarding the approach to be taken or next steps in light of this.

- 58. I do not recall any concrete decisions being made at this meeting regarding Audit Services' acquisition of the unredacted Golder Report. I understood the purpose of the meeting was largely to share information. I was less senior than the others in attendance at this meeting. It is possible that they met and made decisions on other occasions when I was not in attendance.
- 59. I do not recall any discussion regarding retaining external legal counsel during that meeting.
- RHVP was safe at this meeting, and that Public Works staff indicated that they were either presently satisfied that it was, or that they were doing what needed to be done to ensure its safety. I do not have a specific recollection of those involved in this discussion, but as Mr. McGuire and Mr. McKinnon were the Public Works staff in attendance, I believe they likely provided this information.

# Retaining External Legal Counsel

61. I recall Ms. Auty telling me that she wanted to retain external legal counsel some time in early December 2018, and that she was thinking of retaining David Boghosian in particular. Mr. Sabo had raised the possibility of involving Mr. Boghosian in an email I was copied on from November 21, 2018 (HAM0061984\_0001). Ms. Auty and/or Mr. Sabo bore responsibility for deciding to retain external legal counsel in this matter, and I did not have any involvement in that decision. I understood that they wanted to retain external legal

counsel because there was concern about the RHVP-related litigation and the possible impact the Tradewind Report would have on the City's position, and for a second opinion on the FOI response and whether the Tradewind Report would have to be released.

- 62. I recall participating in a call on December 7, 2018 with Ms. Auty and Mr. Boghosian. Mr. Sabo was on vacation at this time. I attended the call from Ms. Auty's office (HAM0062495\_0001). Ms. Auty and I likely had a discussion prior to the call with Mr. Boghosian during which we discussed what we intended to speak with him about. I do not have a specific recollection of the details of that discussion or the call with Mr. Boghosian. The purpose of the call was to retain Mr. Boghosian. Ms. Auty provided Mr. Boghosian with a summary of the issues for which she intended to retain him.
- 63. Generally, I recall that Ms. Auty advised Mr. Boghosian that there was a report dealing with friction testing that contained different information from what the City had previously understood, and that it could have an impact on litigation. Ms. Auty and Mr. Boghosian were the primary speakers on the call. I may have provided Mr. Boghosian with my preliminary views that the Tradewind Report would have to be released via FOI 18-189, but I do not recall.
- 64. With respect to Mr. Boghosian's note "draft letter to CIMA", I do not recall the details of any discussion about the drafting of a letter to CIMA or about who should contact CIMA regarding the Tradewind Report (HAM0064341\_0001 and HAM0064359\_0001). However, at some point, Ms. Auty directed me to draft a retainer letter to CIMA. I do not have a detailed recollection of when I received these instructions, or the precise instructions Ms. Auty provided. Because I do not have a specific recollection of receiving

this instruction, it is possible that she gave me this direction prior to the call with Mr. Boghosian, however it is also possible that these instructions came as a result of the discussion on the call.

### Drafting Retainer Letter to CIMA

- 65. I understood as of December 7, 2018 that CIMA had not seen the Golder or Tradewind Reports. I do not have a specific recollection of how or when I came to have this understanding, but I expect that Mr. McGuire advised me of this.
- office and began preparing a retainer letter to CIMA ("Draft CIMA Retainer Letter"). To prepare the Draft CIMA Retainer Letter, I asked for and obtained a precedent retainer letter from someone in the Department. I do not recall who provided the precedent to me, however I do not believe that it was Ms. Auty. I have attached to my affidavit a copy of the Draft CIMA Retainer Letter as **Exhibit G** (HAM0064418\_0001). As set out below, I did not finalize this Draft CIMA Retainer Letter.
- 67. At the same time, I also contacted Mr. McGuire to obtain the scope of CIMA's ongoing work for the City (HAM0062007\_0001). I understood from my prior discussions with Mr. McGuire that CIMA was conducting ongoing work for the City, but I did not have details regarding the scope of that work, so I emailed Mr. McGuire to obtain this information. I intended to include this information in the Draft CIMA Retainer Letter, though I do not recall why. I do not recall if Mr. McGuire, or anyone else, ultimately advised me of the scope of CIMA's ongoing work. I do not recall ever discussing the RHVP with Mr. Soldo directly.

- 68. I prepared the Draft CIMA Retainer Letter by revising the precedent letter I obtained. I do not recall if I specifically drafted the language regarding "solicitor-client/legal advice" and "litigation privilege", or if this was language I obtained from the precedent letter.
- 69. I do not recall the details of any discussion with Ms. Auty and/or Mr. Boghosian about how to obtain CIMA's input on interim safety without it being subject to disclosure. However, my belief based on my recent review of the Draft CIMA Retainer Letter and certain emails between Ms. Auty and Mr. Boghosian (HAM0062502\_0001, HAM0064323\_0001), is that the purpose of the Department retaining CIMA, rather than Public Works, would have been to protect the channel of communication between CIMA and the City from disclosure using legal privilege.
- 70. I do not recall if I specifically drafted the language used in the paragraphs relating to the "terms and conditions with regards to the City's disclosure to [CIMA] of the Tradewind Report". It is my belief that I likely was revising language that was found in the precedent letter, as I was trying to ensure my drafting was consistent with what was used in past retainer letters.
- 71. I do not recall turning my mind to whether the terms and conditions in the Draft CIMA Retainer Letter would have the effect of limiting CIMA's ability to speak to Public Works staff about the Tradewind Report.
- 72. I do not recall any discussions with Ms. Auty, Mr. Sabo or Mr. Boghosian about whether Public Works should be communicating directly with CIMA regarding the Tradewind Report, or the appropriate flow of information between CIMA, the Department

and Public Works. I was not responsible for determining which department, if any, at the City ultimately retained CIMA. In my view, if Public Works staff felt that there was information in the Tradewind Report that they needed to share with CIMA, they would have explained that to the Department, and it would have been discussed.

- 73. I drafted the paragraphs on CIMA's proposed mandate based on my understanding of what was discussed during the call with Ms. Auty and Mr. Boghosian, as well as Ms. Auty's instructions, however I do not have a specific recollection of these discussions. I do not recall the reason(s) why this particular mandate was sought:
  - [CIMA's] expert findings, opinions and conclusions on whether there are any remediation
    measures that should be taken by the City to address any safety concerns that may exist with
    the Red Hill Valley Parkway ("the RHVP") between now and the Summer of 2019 when the
    RHVP will be resurfaced.
  - 2. [CIMA's] concerning whether or not possible further inquiries, investigations and testing are advisable.
- 74. I recall that I never finalized the Draft CIMA Retainer Letter because I was not confident that I fully understood exactly what Ms. Auty was trying to capture or address in the letter. I felt that it would be best for Ms. Auty or Mr. Boghosian to prepare the letter. I advised Ms. Auty of this, though I do not have a specific recollection of this discussion or when it occured. I do not recall if I sent or otherwise showed Ms. Auty a copy of the Draft CIMA Retainer Letter.
- 75. I do not recall any discussions with Ms. Auty about asking for Mr. Boghosian's advice on how to approach or contact CIMA regarding the Tradewind Report, although I may had such a discussion. I understood that Ms. Auty was seeking this advice from Mr.

Boghosian when I reviewed Ms. Auty's draft retainer letter addressed to Mr. Boghosian, which she provided to me on December 7, 2018 for review and comment (HAM0062496\_0001 and HAM0062497\_0001). I do not recall if I had already spoken to Ms. Auty about the Draft CIMA Retainer Letter by the time she sent me Mr. Boghosian's draft retainer letter. I also do not recall if my discussion with Ms. Auty about the Draft CIMA Retainer letter preceded her email to Mr. Boghosian on December 7, 2018 at 3:18pm in which she asked him for advice on "[h]ow to approach obtaining CIMA consultant input on whether interim measures are needed to protect safety before the resurfacing is completed in June 2019 (litigation privilege?)." (HAM0062502 0001)

- 76. Ms. Auty was responsible for deciding the scope of Mr. Boghosian's retainer and ultimately prepared the first draft of the retainer of his law firm. My primary role in retaining external legal counsel was to assist Ms. Auty in answering questions and providing her information on key documents as it related to FOI 18-189.
- 77. Once I explained to Ms. Auty that I felt it was preferable for someone else to complete the Draft CIMA Retainer Letter, I no longer had any involvement in the discussions or decisions regarding retaining CIMA. I was not asked to continue to work on the Draft CIMA Retainer Letter. To my knowledge, no one in the Department ultimately finalized or sent a retainer letter to CIMA. I have no knowledge of what action, if any, Mr. Boghosian took to contact or retain CIMA, other than what I have learned through my involvement in this Inquiry.

#### Advice Regarding Contact with CIMA

- 78. I do not recall if I had any discussions with Mr. McGuire about his desire to contact CIMA confidentially, apart from his emails on December 8 and 12, 2018 (HAM0053949\_0001 and HAM0062510\_0001). I did not have a specific understanding of why Mr. McGuire wanted to contact CIMA confidentially. My assumption at the time was that it was to find out what CIMA knew or did not know regarding the Tradewind Report, and to try to better understand what had happened in 2014-2015.
- 79. I do not specifically recall why Mr. McGuire had the impression that someone in the Department would be contacting Brian Malone. I do not have any recollection of discussing with Mr. McGuire, or anyone in the Public Works Department, that the Department was considering retaining CIMA to, among other things, assess interim safety measures, apart from my emails to Mr. McGuire referenced above. I did not send or otherwise show Mr. McGuire a copy of the Draft CIMA Retainer Letter. It appears from the documents I have reviewed that Mr. McGuire thought I was going to contact CIMA, however, this was not part of my role, which was limited to FOI 18-189. It is my belief that I must have said something to Mr. McGuire to give him that impression, however I do not have any recollection of this.
- 80. I do not know if, as of that time, Mr. McGuire was aware that the City was retaining external legal counsel in connection with the RHVP matter. I was not in a position to tell Mr. McGuire who the City was retaining, as I did not yet know if Mr. Boghosian had been retained, and I was not sure of the scope of his retainer or who was going to be responsible for what. At this time, I understood that Ms. Auty, and perhaps Mr. Boghosian, were addressing the question of how to contact CIMA.

- 81. I do not believe I told Ms. Auty, Mr. Sabo or Mr. Boghosian that Mr. McGuire wanted to contact CIMA confidentially.
- 82. I "strongly advised" Mr. McGuire not to contact CIMA on December 10, 2018 (HAM0053949\_0001) because I knew that Ms. Auty was in the midst of retaining Mr. Boghosian and I did not know what advice Mr. Boghosian could provide about contacting CIMA or what information to give CIMA. I wanted to put the discussion with CIMA "on pause" momentarily until decisions could be made by others, so that something was not inadvertently influenced by a quick decision.
- 83. My understanding that Ms. Auty and Mr. Boghosian were addressing who was to be responsible for contacting or retaining CIMA was confirmed when, on December 11, 2018, Ms. Auty forwarded me an email exchange she had with Mr. Boghosian, in which they discussed "how to obtain an opinion from CIMA regarding interim safety measures regarding the condition of the RHVE pending re-surfacing in June 2019" in a way that "could prevent access to any correspondence they send conferring their opinion" (HAM0062502\_0001, HAM0064323\_0001).
- 84. As City Solicitor, Ms. Auty was the ultimate decision maker on the direction that the Department would be taking. In writing, "I haven't received any direction on this yet" in my email to Mr. McGuire on December 12, 2018 (HAM0062510\_0001), on which Ms. Auty was copied, the direction I was referring to was that I was waiting for confirmation from Ms. Auty that external counsel had been retained and confirmation about who would be the appropriate person to be the conduit for any discussions with CIMA. When writing "We should be able to update you this week (I hope by mid-week)" in my email to Mr.

McGuire on December 10, 2018 (HAM0053949\_0001), I do not recall if I expected Ms. Auty to update Mr. McGuire directly regarding whether he could contact CIMA. I did not expect Ms. Auty to provide me with such an update, though I do not recall if she ultimately did so. While I do not believe I advised Ms. Auty, Mr. Sabo or Mr. Boghosian that Mr. McGuire had wanted to contact CIMA confidentially, I expected that Mr. McGuire would be updated by someone regarding CIMA.

- 85. In giving advice to Mr. McGuire not to contact CIMA, I had intended Mr. McGuire to hold off giving CIMA a copy of the Tradewind or Golder Reports and having discussions with them about CIMA's views and/or response until further direction had been received from external counsel and/or Ms. Auty.
- 86. I did not intend that Mr. McGuire should not discuss the safety of the RHVP with CIMA nor did I view my advice as impacting what decisions were being made regarding safety or restricting or limiting Public Works' ability to communicate with CIMA regarding the work it was presently conducting on the RHVP, or the RHVP's safety more generally. I would not have given Mr. McGuire advice on anything to do with safety of the RHVP, and I do not believe that Mr. McGuire would have sought such advice from me. I understood that safety measures, interim or otherwise, were the responsibility, obligation and role of Public Works, and that they were doing what they believed needed to be done to address RHVP safety. I was not aware of the precise scope of the work CIMA was doing in 2018. In contrast, Public Works staff were aware of CIMA's mandate for the work it was already conducting at this time, and if they felt CIMA required the Tradewind Report, I expected that they would have advised the Department of this and, to my knowledge,

they did not. I understood this to mean that CIMA did not require the Tradewind or Golder Reports for its then current work with the City, and that it was not needed to make decisions on safety measures that needed to be implemented, as I understood Public Works to already be addressing RHVP safety. I understood the Tradewind Report to be dated, and that other reports and work had been completed on the RHVP since it was prepared.

- 87. I do not recall if I had any discussions with Ms. Auty and/or Mr. Sabo about Mr. McGuire's December 12, 2018 email following up about contacting Mr. Malone (HAM0062510\_0001). Based on the language of my responding email to Mr. McGuire, I likely followed up with Ms. Auty and/or Mr. Sabo, but I do not have a recollection of doing so. I also understood that Mr. Boghosian was already alert to CIMA being a potentially important party to talk to. It is my belief, based on the language of my email, that I was not aware of who was responsible for retaining or contacting CIMA as of December 12, 2018, though I acknowledge that I was copied onto an email chain on December 11, 2018, which included an email from Ms. Auty in which she instructed Mr. Boghosian to contact CIMA (HAM0064323\_0001).
- 88. At some point, I was told that Mr. Boghosian was retained as external legal counsel, but do not recall who told me this or when I was told that. I acknowledge that the email chain I was copied onto on December 11, 2018 also included confirmation of Mr. Boghosian's retainer (HAM0064323\_0001). I do not recall if I advised Mr. McGuire that external legal counsel, Mr. Boghosian, had been retained, or if I had subsequent discussions with Mr. McGuire regarding contact with CIMA. I do not recall being provided

with information regarding who was ultimately to be responsible for contacting and/or retaining CIMA, though I acknowledge that I was copied onto an email chain on December 11, 2018, which included an email from Ms. Auty in which she instructed Mr. Boghosian to contact CIMA (HAM0064323\_0001). I did not expect to receive such an update, as I was focused on my task of responding to FOI 18-189. I do not know if anyone ever provided such an update to Mr. McGuire.

- 89. I did not receive a copy of Mr. Boghosian's draft or final opinion letter. After the call on December 7, 2018, I do not recall having any further involvement with Mr. Boghosian.
- 90. I took a personal leave of absence from the City starting in mid-December 2018. I was aware of this upcoming leave before it started.
- 91. On December 16, 2018, prior to departing on my leave, I emailed Mr. McGuire a chart outlining my thoughts on the responsiveness of the documents I received from his office, as well as the potential applicability of any exemptions to disclosure under *MFIPPA* (HAM0062020\_0001 and HAM0062021\_0001). In the chart, I identified an exemption under s. 7 of *MFIPPA* that could possibly apply to both the Tradewind Report and the Golder Report. Despite my inclusion of a possible exemption in this chart, I maintained my view that the Tradewind Report was likely to be released pursuant to FOI 18-189. I did not think that the s. 7 exemption would, or should, be successful in preventing the release of the two reports, however I viewed my role as the solicitor providing advice to a client department to be to identify any potential exemptions that could apply. Because the Golder and Tradewind Reports were advice from an external consultant, I felt that there was a potential argument that the reports, and in particular the text I highlighted in the

hard copy I provided to Mr. McGuire (which I referred to as the "working copy" in the chart I provided), fell within the s. 7 exemption (HAM0062020\_0001, HAM0062021\_0001, HAM0061519\_0001 and HAM0064428\_0001). I have attached to my affidavit a copy of a memorandum Ms. Delry sent to Mr. McGuire which enclosed the highlighted hard copy documents corresponding to the chart I sent by email as **Exhibit H** (HAM0064428\_0001).

- 92. After December 17, 2018, I believe Mr. Sabo was responsible for assisting Public Works with FOI 18-189 after my departure on leave. I do not recall if Mr. Sabo or anyone else from Legal Services had any continued involvement with FOI 18-189 from April 2019 onward.
- 93. I returned from my leave on April 1, 2019, and do not recall having any further involvement upon my return, apart from receiving an update from Mr. Sabo advising that the materials for FOI 18-189 appear to have been released to the requestor (HAM0062627\_0001). To the best of my recollection, I did not have any involvement in FOI 18-189 or any RHVP-related issues by providing legal services to a client department after returning from my leave.
- 189 or the RHVP more generally were included in my file but I acknowledge that I appear to have reviewed documents over time which were placed in my file. To the best of my memory, these documents do not indicate any ongoing involvement in matters relating to the RHVP after my return from my leave of absence; they were just documents relating to the FOI 18-189/RHVP file and so they were placed in the file folder. As noted above, I

do not recall being further involved in providing legal services to a client department in matters relating to the RHVP after my return to the City in April 2019.

95. In preparing this affidavit, I have been informed that recent City productions list me as the custodian for certain documents that were released to the requestor as of November 4, 2019. I have no memory of how I came to be in possession of documents related to subsequent releases of documents responsive to FOI 18-189.

96. I make this affidavit for use in the Red Hill Valley Parkway Inquiry.

Affirmed remotely by Byrdena MacNeil of the City of Hamilton before me in the City of Toronto in the Province of Ontario, this 15<sup>th</sup> day of March, 2023, in accordance with O. Reg. 431/20, Administering Oath or Declaration Remotely

A Commissioner for Taking Affidavits

Olivia Eng

Olivia Eng, LSO 84895P

Byrdena MacNeil

This is **Exhibit "A**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

# <u>Details for Matter: 18-1054 - FOI #18-189 - MFIPPA Access Request for Red Hill</u> <u>Valley Parkway (RHVP) Friction Testing and Asphalt and/or Pavement Testing</u> Records

Matterld : 18-1054

Matter/Case Name : FOI #18-189 — MFIPPA Access Request for Red Hill Valley Parkway (RHVP) Friction

Testing and Asphalt and/or Pavement Testing Records

Status : Oper

Third Party :

Fourth Party :

File Class : General

File Type :

Solicitor:MacNeil, ByrdenaLaw Clerk:Bentley, CarlaAssistant:Delry, Pam

Date File Opened : 11/20/2018

Chargeback Client:PW - Energy, Fleet & FacilitiesClient Dept:PW - Energy, Fleet & Facilities

:

Chargeback : No

Capital Project ID#

Contact Person : Gord McGuire

Description : FOI #18-189 – MFIPPA Access Request for Red Hill Valley Parkway (RHVP) Friction

Testing and Asphalt and/or Pavement Testing Records

:

Notes/Status : file received Nov 8, 2018; assigned Nov 9, 2018

Date of Loss :

Location of Loss : SOC Date Filed :

RMS Claim No. : RMS Rep : RMS Rep Other :

Amount Claimed : Amount Paid/Received :

Outside Counsel :
Date Sent :
Date Returned :

Date Closed :
Disposition :
Disposal Date :
File Location :

Created By : pdelry
Modified By : pdelry

This is **Exhibit "B**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

# File #18-189

# Request for Access to Municipal Records Information Sheet

Access and Privacy Officer: Anne Watson Telephone: (905) 546-2424 ext. 4632 Fax: (905) 546-2095

E-mail: anne.watson@hamilton.ca

The City is in receipt of a request to access municipal records pursuant to the provisions of the *Municipal Freedom of Information and Protection of Privacy Act* (the *Act*).

Please review the request details below and complete the necessary searches for responsive records. Your department has seven (7) calendar days in which to complete its record searches and provide a response to our office.

If it appears that the **record searches** will <u>exceed three (3) hours</u>, you may wish to consider conducting a representative search of a smaller amount of records; providing our Office with a search time estimate detailed on page 2 of the Information Sheet. Based on your department's response our office will determine whether or not to issue a fee estimate to the requester before proceeding further with the request.

Your department response, including the completed Information Sheet and a **HARD COPY** of the responsive records, <u>SINGLE- SIDED AND UN-STAPLED</u> is due at our Office (CITY HALL, 1<sup>ST</sup> FLR) by Thursday, November 15, 2018.

Please contact **Anne Watson** if you have questions concerning the request or require assistance to complete page 2 of this form.

Access to any reports, memos, drafts, correspondence about **friction testing** on the Red Hill Valley Parkway in the **last five years** AND any reports, memos (including drafts), or correspondence about **asphalt and/or pavement testing, assessments, plans** on the Red Hill Valley Parkway in the last **two years** 

| Na               | me: Gord McGuire Division/Section: Engineering Services                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ph               | one: _2439                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1.               | defined as any record of information however recorded, whether in printed form, on film, by electronic means or otherwise. (e.g. reports, correspondence, memos, Inspector notebooks, books, plans, maps, drawings, diagrams, pictorial or graphic works, photographs, film, microfilm, sound recordings, e-mails)                                                                                   |  |  |  |
| •                | X Yes 🗆 No                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 2.               | Are any of the records that are responsive to this request, <u>available to the Public directly</u> through your Department? If yes, please <b>identify the record(s)</b> , any <b>applicable department fees</b> , and a <b>contact person and telephone number</b> ( <u>DO NOT PROVIDE a copy of the records if the records are available directly through your office</u> ).                      |  |  |  |
|                  | □ Yes X No                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 3.               | If your Department has records responsive to the request that are <b>not</b> routinely available through your Department, please provide information describing the following:                                                                                                                                                                                                                       |  |  |  |
|                  | <ul> <li>The type of records;</li> <li>Physical location of records and how the records are stored or maintained;</li> <li>Approximate volume of responsive records;</li> <li>The activities involved in identifying the responsive records</li> </ul>                                                                                                                                               |  |  |  |
|                  | List any concerns about disclosure of the records(s)                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Key si<br>weeks  | taff will be out of the office from November 15 <sup>th</sup> to November 26th and will not be available for the next 2                                                                                                                                                                                                                                                                              |  |  |  |
| from a<br>to ass | We have records for both the 2 year and 5 year requests, however, some of those records may be exempt from disclosure under MFIPPA. As a result, we require an extension of 5-6 weeks to allow us reasonable time to assemble, collect and review all the records, and to consult with Legal Services and other parties outside the institution, as necessary, about any possible MFIPPA exemptions. |  |  |  |
| This re          | equest necessitates a search through a large number of records.                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 4.               | Under the <i>Act</i> the City can apply fees for <b>record searching</b> , <b>record preparation</b> , <b>and photocopying ONLY</b> . However, for internal purposes the FOI Office does track the amount of time spent by City staff on each FOI request. Please indicate the amount of time spent completing <b>EACH</b> of the following activities ( <b>if applicable</b> ):                     |  |  |  |
|                  | <ul> <li>Searching for responsive records</li> <li>Searching &amp; Printing microfiche records</li> <li>Searching &amp; Printing AMANDA/HANSEN records</li> <li>Pulling records</li> </ul>                                                                                                                                                                                                           |  |  |  |
|                  | Reviewing records                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                  | <ul> <li>Copying records0.5 day</li> <li>Assembling/scanning/delivering/faxing records 0.5 day</li> </ul>                                                                                                                                                                                                                                                                                            |  |  |  |
| 5.               | Are you aware of any other <b>City Department</b> (e.g. Public Works, Corporate Services, Healthy & Safe Communities) that may have responsive record(s)? If yes, please identify the Department and provide staff contact information if known.                                                                                                                                                     |  |  |  |
|                  | □ Yes X No                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                  | (If you are aware of <b>another</b> division or section <u>within</u> your <b>City Department</b> that may have responsive records, please ensure that the request details are appropriately disseminated and the response(s) included in your <b>Department's complete response</b> .)                                                                                                              |  |  |  |

[ DATE \@ "M/d/yyyy"]

[ DATE \@ "M/d/yyyy" ]

This is **Exhibit "C**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

From:

MacNeil, Byrdena

Sent:

July 19, 2019 4:12 PM

To:

RHVP Inquiry Legal Hold

Subject:

Legal Hold Notice - B. MacNeil

**Attachments:** 

Legal Hold Notice - Byrdena MacNeil - July 19-19.pdf

Attached, please find my signed copy of the Legal Hold Notice, as requested.

Thanks,



Mailing Address: City of Hamilton - Legal Services City Hall

71 Main Street West Hamilton, Ontario L8P 4Y5 Byrdena M. MacNeil, Solicitor

Legal Services, City of Hamilton Phone: 905.546.2424, ext. 4637

Fax: 905.546.4370

Courier: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9

The contents of this message are privileged and confidential, intended only for the recipients named above, and are subject to solicitor and client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please delete it and call 905-546-2424, ext. 4637, collect if calling long distance. Thank you.

#### LEGAL HOLD NOTICE

A Judicial Inquiry, a proposed Class Action and other litigation have been commenced that relate, at least in part, to the Red Hill Valley Parkway (the "Proceedings"). You are receiving this Legal Hold Notice because you have been identified as someone who may possess or control documents that are relevant to the Proceedings.

Beginning immediately, and for the indefinite future, you must not destroy, delete, alter or dispose of any documents in your possession or control that relate to the matters at issue in the Proceedings.

### 1. What are the Issues in the Proceedings?

A variety of issues may be addressed in the Proceedings. The issues that will be explored in the Judicial Inquiry are set out in the Terms of Reference attached to this document, and the issues that may be addressed in the proposed Class Action are set out in the Statement of Claim attached to this document. Please read the Terms of Reference and Statement of Claim carefully. For greater clarity, documents related to any of the following issues must be preserved:

- Design, engineering, construction and maintenance of the Red Hill Valley Parkway, including selection of road surfacing materials and geometric design;
- Testing conducted of the Red Hill Valley Parkway and the LINC;
- Friction, asphalt or general road safety of the Red Hill Valley Parkway and the LINC;
- Reports or assessments with respect to the Red Hill Valley Parkway, including reports from the Ministry of Transportation;

Action taken by the City of Hamilton in respect of reports or assessments with respect to the Red Hill Valley Parkway

- Policies and procedures of the City of Hamilton's Public Works Department, including the Engineering Services and Transportation Operations & Maintenance divisions, regarding reviewing and reporting on information or reports submitted to or requested by the Department.
- Acceptable friction levels on a roadway.
- Causes of motor vehicle accidents on the Red Hill Valley Parkway.
- Red Hill Valley Parkway accident rates and reports.

- Communications between the City of Hamilton and any of Golder Associates, Tradewind Scientific, and/or Dufferin Construction.
- The relationship between the City of Hamilton and any of Golder Associates, Tradewind Scientific, and/or Dufferin Construction, including but not limited to: sponsorships, donations, entertainment, promotional materials, lobbying, and co-authorship or collaboration by employees or representatives thereof respecting any publication, article, presentation, or report.
- Documents with respect to all of the above.

#### 2. How Do I Preserve Documents?

"Document" is defined broadly under this Legal Hold. It includes any type of draft or final hard copy handwritten or printed material or electronically stored information, data or communications such as email contained in business or personal email accounts, text messages or instant messages (e.g. WhatsApp), presentations, spreadsheets, photographs, voicemail messages, audio or video recordings stored on business or personal desktops, laptops, mobile devices or external drives. On a going forward basis:

- Documents need to be preserved regardless of where or how they are stored including, but not limited to, on your work or personal computer or laptop, on the City's server, on your work or personal smart phone or tablet, or in your City or personal email accounts.
- Documents you preserve should be maintained in their original format and in their current location.
- Various versions of a document are considered unique documents and must be preserved
  if they relate to the issues in the Inquiry.
- You should preserve a document even if you think someone else has a copy of it.
- Please ensure that any automatic or ordinary course purging or deletion of documentation
  which may be related to the Proceedings is stopped. For example, if you are scheduled to
  receive a new computer or smart phone, switch jobs or leave your employment with the
  City permanently please contact Nicole Auty to ensure that all documents which require
  preservation under this notice are properly maintained through this process.

# 3. What Else Do I need to Know About this Legal Hold?

This Legal Hold Notice is for internal distribution only and is a communication covered by solicitor-client privilege. Accordingly, you must take every effort to maintain the confidentiality of this Legal Hold Notice and any related communications.

You do not need to take steps to collect copies of any potentially relevant documents at this time. This Legal Hold Notice simply requires you to ensure any such documents are not destroyed, deleted, altered or disposed of. Legal counsel will be in touch with you in future to coordinate the collection of documents in respect of the Judicial Inquiry, the proposed Class Action and/or other litigation. Compliance with this Legal Hold is mandatory. Consequences of non-compliance can be severe, including the presumptions of wrongdoing, reputational damage, and possible civil or criminal liability. Any doubts as to whether documents should be kept should be resolved in favour of preservation.

This Legal Hold remains in effect until such time as you are informed otherwise.

If you have any questions about this Legal Hold, including the nature of documents that require preservation and the technical requirements set out here please contact Nicole Auty at Nicole.Auty@hamilton.ca

The undersigned hereby acknowledges receipt of this Legal Hold as well as an understanding of the requirements within. The undersigned intends to abide by this Legal Hold.

A signed copy of this legal notice must be sent to rhvplegalhold@hamilton.ca by July 31, 2019

BYRDENA M. MACHEIL

Byrdena W. Wacril

July 19, 2019

TOR\_LAW\ 9956746\2

Name:

From:

MacNeil, Byrdena

Sent:

December 16, 2018 9:38 PM

To:

McGuire, Gord

Cc:

Auty, Nicole; Sabo, Ron; McLennan, John; Bentley, Carla; Delry, Pam

Subject:

RE: CIMA Report 2013 and FOI 18-189 - RHVP

**Attachments:** 

FINAL Responsive Records Chart.doc

Importance:

High

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

Further to my earlier email of this evening, I write with respect to the following matters:

### Committee and Council Reports

Thanks for sending along the reports PW18-008 and PW15091. Would these be the only Committee or Council reports dealing with (i) friction of RHVP (2013-2018) and (ii) asphalt and/or pavement of RHVP (2016-2018)?

If not, your office should collect all of the relevant Committee and Council reports in order to deliver them to Anne Watson as part of your response to FOI 18-189. If they are public reports, then there are no MFIPPA exemptions to be claimed and they would be disclosed.

If, however, any of the reports are confidential or in camera, then s. 6 of MFIPPA should be claimed for them. Section 6 reads:

# Draft by-laws, etc.

- 6 (1) A head may refuse to disclose a record,
- (a) that contains a draft of a by-law or a draft of a private bill; or
- (b) that reveals the substance of deliberations of a meeting of a council, board, commission or other body or a committee of one of them if a statute authorizes holding that meeting in the absence of the public.

#### Exception

- (2) Despite subsection (1), a head shall not refuse under subsection (1) to disclose a record if,
- (a) in the case of a record under clause (1) (a), the draft has been considered in a meeting open to the public;

- (b) in the case of a record under clause (1) (b), the subject-matter of the deliberations has been considered in a meeting open to the public; or
- (c) the record is more than twenty years old. R.S.O. 1990, c. M.56, s. 6.

# Review of Responsiveness of Documents You Have Already Provided

I attach a chart setting out my thoughts on which exemptions may apply to the documents which you have provided us to date with respect to FOI 18-189. My office will send you a hard copy of the documents corresponding to the Index that have been highlighted, so that you will be able to review and consider same. If you agree with the suggested exemptions, then your office should send a copy of the documents (as highlighted), along with the Index, to Anne Watson for her review and consideration.

There may very well be additional exemptions that Anne identifies and applies so as to exempt some of the records so she should be asked to advise you if there are any additional MFIPPA exemptions that apply.

I note that Mike Becke's office is still working on locating/obtaining relevant documents that will need to also be forwarded to Anne Watson. Obviously I have not reviewed same.

# Contact will be Ron Sabo

Finally, unfortunately, I am going to be away from work after tonight for some time due to a personal situation. In my absence, please be sure to contact Ron Sabo on a going forward basis. (And I am sorry to leave you in the lurch.)

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-16-18 8:50 PM

To: MacNeil, Byrdena; Auty, Nicole; Sabo, Ron; McLennan, John

Subject: RE: CIMA Report 2013 and FOI 18-189 - RHVP

Sensitivity: Confidential

Thanks Byrdena:

I've attached 2 reports on the Linc / RHVP.

In 2015 we identify a series of issues and countermeasures. In 2018 there is a comprehensive report that has a detailed discussion on most element along this facility.

Appendix A notes that Friction Testing as a medium term measure has been performed, and is marked complete.

These reports are responsive to the internal audit questions, and may be as well to the MFIPPA process.

We can discuss this next week if you're available. Thanks



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: MacNeil, Byrdena

Sent: December 16, 2018 7:31 PM

To: McGuire, Gord <Gord.McGuire@hamilton.ca>; Auty, Nicole <Nicole.Auty@hamilton.ca>; Sabo, Ron

<Ron.Sabo@hamilton.ca>; McLennan, John <John.McLennan@hamilton.ca>

Subject: CIMA Report 2013 and FOI 18-189 - RHVP

Sensitivity: Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Attached, for your information and file, please find a copy of the "Red Hill Valley Parkway Safety Review" prepared by CIMA in October 2013 (am sending in 4 parts).

This has been produced to plaintiff's counsel as part of the City's AOD in the *Hansen* litigation being handled by Dana Lezau (Court File No.: 17-61728). Note that the report recommends that the City should perform friction testing.

Gord, it appears to me that this record is responsive to the FOI 18-189 access request, in the same way that the 2015 CIMA report is responsive. The 2013 report is also mentioned in the 2015 report at page 2 (para. 1) wherein it states:

"...In 2013, CIMA Canada Inc. (CIMA) conducted a safety review of the section of the RHVP between the Dartnall Road and Greenhill Avenue interchanges, providing a series of recommendations to improve safety."

I would recommend that this 2013 CIMA report be included in the volume of documents that are provided to Anne Watson in response to FOI 18-189.

# Thanks, Byrdena

# Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

FOI #18-189

INDEX IDENTIFYING POSSIBLE MFIPPA EXEMPTIONS

| Tab | <u>Date</u>  | <u>Description</u>                                                                                                    | Responsiveness to Request #1 re<br>Friction Testing (2013-2018)                                                                                                                              | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018) |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1   | Oct 18, 2007 | Email from Ludomir Uzarowski to Gary<br>Moore, Marco Oddi re Friction on SMA on<br>Hamilton's Red Hill Valley Parkway |                                                                                                                                                                                              |                                                                         |
| 2   | Oct 4, 2013  | Email from Stephen Cooper to Michael Becke, Alan J. Jazvac re RHVP – re-surface date                                  | Not responsive                                                                                                                                                                               | Yes but outside the relevant time-frame                                 |
| 3   | Nov 20, 2013 | Friction Testing Survey Summary Report prepared by Tradewind Scientific for Golder Associates Ltd.                    | Yes; possible s. 7 Advice and Recommendations exemption, see especially orange highlighting in working copy                                                                                  | Not responsive                                                          |
| 4   | Jan 2014     | Performance Review after Six Years in<br>Service re Redhill Valley Parkway prepared<br>by Golder Associates           | Not entirely responsive but portions are, including Tradewind Report; same exemptions applying to <u>Tradewind Report</u> identified in Tab 3 record would apply here                        | Not responsive                                                          |
| 5   | Jan 24, 2014 | Email from Gary Moore to Thomas<br>Dziedziejko re Red Hill SMA                                                        | Yes; no exemptions                                                                                                                                                                           | Not responsive                                                          |
| 6   | Nov 2015     | Red Hill Valley Parkway Detailed Safety<br>Analysis prepared by CIMA                                                  | Yes; portions are responsive.<br>However, since this report is already in<br>the public domain (it is available on the<br>City of Hamilton website) it should be<br>released in its entirety | Not responsive                                                          |
| 7   | Dec 17, 2015 | Email from Ludomir Uzarowski to Gary Moore re Red Hill SMA                                                            | Same exemptions applying to<br>Tradewind Report identified in Tab 3<br>record would apply here                                                                                               | Not responsive                                                          |

| Tab | <u>Date</u>  | Description                                                                                                    | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018) |
|-----|--------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| 8   | Apr 18, 2016 | Email from Richard Andoga to Michael<br>Becke, Alan J. Jazvac re LINC – Red Hill<br>Rehabilitation             | Not responsive                                                  | Yes; no exemptions identified                                           |
| 9   | Apr 7, 2017  | Email from Richard Andoga to Lisa<br>Castronovo re LINC – Redhill resurfacing –<br>project scope               | Not responsive                                                  | Yes; no exemptions identified                                           |
| 10  | Apr 27, 2017 | Email from Ludomir Uzarowski to Richard<br>Andoga re Red Hill Valley Parkway Dip/Bump<br>Analysis              | Not responsive                                                  | Yes; no exemptions identified                                           |
| 11  | Jun 12, 2017 | Email from Sarath Vala to Susan Jacob re<br>CPMS 10986 – Redhill Valley Parkway<br>(RHVP) Rehabilitation       | Not responsive                                                  | Yes; no exemptions identified                                           |
| 12  | Jun 19, 2017 | Email from Richard Andoga to David<br>Ferguson re CPMS 10986 – Redhill Valley<br>Parkway (RHVP) Rehabilitation | Not responsive                                                  | Yes; no exemptions identified                                           |
| 13  | Jun 20, 2017 | Email from Richard Andoga to David<br>Ferguson re CPMS 10986 – Redhill Valley<br>Parkway (RHVP) Rehabilitation | Not responsive                                                  | Yes; no exemptions identified                                           |
| 14  | Jun 20, 2017 | Email from Richard Andoga to David<br>Ferguson re CPMS 10986 - Redhill Valley<br>Parkway (RHVP) Rehabilitation |                                                                 |                                                                         |
| 15  | Jul 27, 2017 | Email from Susan Jacob to Sarath Vala,<br>Michael Becke re RHVP Scope                                          | Not responsive                                                  | Yes; no exemptions identified                                           |
| 16  | Aug 18, 2017 | Email from Sarath Vala to Michael Becke re RHVP Scope                                                          | Not responsive                                                  | Yes; possible s. 7 Advice & Recommendations exemption                   |
| 17  | Aug 18, 2017 | Email from Gary Moore to Michael Becke,<br>Richard Andoga re RHVP reinstatement of<br>monitoring loops         | Not responsive                                                  | Yes; no exemptions identified                                           |

| <u>Tab</u> | <u>Date</u>  | <u>Description</u>                                                                                                                                                             | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018)                                               |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 18         | Aug 28, 2017 | Email from Richard Andoga to Michael Becke re LINC – RHVP resurfacing                                                                                                          | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 19         | Sep 22, 2017 | Email from Bob Butrym to Sarath Vala re Red<br>Hill Valley Parkway (RHVP) – MTO<br>Coordination 7 Maintenance of Traffic                                                       | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 20         | Oct 3, 2017  | Email from Michael Becke to Christopher Norris re RHVP – NB Core Location-A                                                                                                    | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 21         | Oct 3, 2017  | Email from Bob Butrym to Sarath Vala re RHVP Resurfacing Project – MTO (Central Region) Temp Conditions Traffic Management: Advance Signing (Notification, Warning, Alt Route) | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 22         | Oct 13, 2017 | Email from Richard Andoga to Sarath Vala,<br>Alan J. Jazvac, Harry Krinas re Redhill Valley<br>Parkway (CPMS 10986) – Rehabilitation<br>Project                                | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 23         | Nov 23, 2017 | Letter from Golder Associates to Gary Moore re Evaluation of Pavement Surface Skid Resistance Red Hill Valley Parkway, City of Hamilton                                        | Yes; possible s. 10 3 <sup>rd</sup> Party Information exemption | Not responsive                                                                                                        |
| 24         | Nov 24, 2017 | Email from Gary Moore to Ludomir Uzarowski re Red Hill – testing for possible Hot in place                                                                                     | Not responsive                                                  | Yes; no exemptions identified                                                                                         |
| 25         | Nov 24, 2017 | Email from Gary Moore to Michael Becke,<br>Richard Andoga re Red Hill – testing for<br>possible Hot in Place                                                                   | Yes; possible s. 10 3 <sup>rd</sup> Party Information exemption | Yes; possible s. 7 Advice & Recommendations exemption; and possible s. 10 3 <sup>rd</sup> Party Information exemption |
| 26         | Jan 2, 2018  | Email from Nicholas Zanello to Rodney<br>Aitchison, Stephen Cooper, David Ferguson<br>re RHVP – North bound resurfacing – Traffic<br>Drawings C15-34-18 (H)                    | Not responsive                                                  | Yes; no exemptions identified                                                                                         |

| <u>Tab</u> | <u>Date</u>  | Description                                                                                                                                                                      | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018)                                                                |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 27         | Jan 31, 2018 | Email from Michael Becke to Richard<br>Andoga, Gary Moore, Dennis Perusin, Susan<br>Jacob re MTO Contract for Hot in Place<br>Recycling (Tender & Contract Drawings<br>attached) | Not responsive                                                  | Yes.  The enclosure is a document belonging to the Province but the accompanying email notes that the document is publically available |
| 28         | Feb 28, 2018 | Email from Ludomir Uzarowski to Michael<br>Becke re Meeting to discuss rehab strategy<br>for RHVP – 2019                                                                         | Not responsive                                                  | Yes; no exemptions identified                                                                                                          |
| 29         | Mar 2, 2018  | Email from Gary Moore to Michael Becke re Reflectors in Red Hill                                                                                                                 | Not responsive                                                  | Yes; no exemptions identified                                                                                                          |
| 30         | Mar 8, 2018  | Email from Michael Becke to Gary Moore re<br>RHVP Strategies - Email from Ludomir<br>regarding HIP                                                                               | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies                                                                        |
| 31         | Mar 13, 2018 | Email from Ludomir Uzarowski to Michael<br>Becke re foamed asphalt and RHVP HIR                                                                                                  | Not responsive                                                  | Yes; no exemptions identified                                                                                                          |
| 32         | Mar 13, 2018 | Email from Gary Moore to Michael Becke re<br>Hot in-place recycling of SMA                                                                                                       | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies                                                                        |
| 33         | Apr 9, 2018  | Email from Michael Becke to Gord McGuire re Hot in place recycling                                                                                                               | Not responsive                                                  | Yes; no exemptions identified                                                                                                          |
| 34         | Jun 6, 2018  | Email from Ludomir Uzarowski to Michael Becke re HIR of RHVP pavement                                                                                                            | Not responsive                                                  | Yes; possible s. 10 3 <sup>rd</sup> Party Information exemption                                                                        |
| 35         | Jun 14, 2018 | Email from Ludomir Uzarowski to Michael<br>Becke re HIR of RHVP pavement                                                                                                         | Not responsive                                                  | Yes; possible s. 7 Advice & Recommendations exemption; and possible s. 10 3 <sup>rd</sup> Party Information exemption                  |
| 36         | Jun 14, 2018 | Email from Ludomir Uzarowski to Michael Becke re HIR on RHVP                                                                                                                     | Not responsive                                                  | Yes; possible s. 10 3 <sup>rd</sup> Party Information exemption                                                                        |

| <u>Tab</u> | <u>Date</u>  | Description                                                                                                                                                                                                                              | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018) |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| 37         | Jun 27, 2018 | Email from Gary Moore to Richard Andoga,<br>Michael Becke, Susan Jacob, Marco Oddi re<br>Hot in place asphalt                                                                                                                            | Not responsive                                                  | Yes; no exemptions identified                                           |
| 38         | Jun 27, 2018 | Email from Michael Becke to Sam Sidawi,<br>Gord McGuire, Richard Andoga re Hot in<br>place – next steps                                                                                                                                  | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies         |
| 39         | Jul 16, 2018 | Email from Michael Becke to Ludomir<br>Uzarowski re Redhill Samples                                                                                                                                                                      | Not responsive                                                  | Yes; no exemptions identified                                           |
| 40         | Jul 17, 2018 | Email from Robert Marques to Bob Butrym re FTMS Sign Message Request for Torontobound QEW in advance of Red Hill Valley Parkway                                                                                                          | Not responsive                                                  | Yes; no exemptions identified                                           |
| 41         | Jul 17, 2018 | Email from Michael Becke to Gord McGuire re Red Hill Valley Parkway – Investigation works                                                                                                                                                | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies         |
| 42         | Jul 17, 2018 | Email from Michael Becke to Chris Olszewski, Bob Butrym, Robert Marques, Martin White, Susan Jacob, Gord McGuire, Jasmine Graham, David Ferguson, Brian Hughes, Sarath Vala, Marco Oddi re RHVP – Upcoming weekend works – July 22, 2018 | Not responsive                                                  | Yes; no exemptions identified                                           |
| 43         | Jul 18, 2018 | Email from Robert Del Conte to Robert<br>Marques, Richard Boorsma, John Hanson,<br>Reinaldo Spagnuolo, Tammy Blackburn, Bob<br>Paul, Michael Becke, Terry McCleary, John<br>Searles re RHVP Sunday SB                                    | Not responsive                                                  | Yes; no exemptions identified                                           |
| 44         | Jul 21, 2018 | Email from Michael Becke to Robert Marques re RHVP Recessed Markers Complete                                                                                                                                                             | Not responsive                                                  | Yes; no exemptions identified                                           |

| Tab | <u>Date</u>  | <u>Description</u>                                                                                                              | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018)                                                                                                                                |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45  | Jul 30, 2018 | Email from Michael Becke to Vimy<br>Henderson, Marco Capobianco re 18100695<br>RHVP Samples                                     | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption; possible s. 12 Legal Advice exemption to reference involving Procurement and Legal; see orange highlighting in working copy for s. 12 portion |
| 46  | Aug 7, 2018  | Email from Michael Becke to Diana Cameron re Hot in place – review existing installations                                       | Not responsive                                                  | Yes; no exemptions identified                                                                                                                                                                          |
| 47  | Aug 17, 2018 | Email from Michael Becke to Robert Marques re HIR of RHVP pavement                                                              | Not responsive                                                  | Yes; possible s. 7 Advice & Recommendations exemption; and possible s. 10 3 <sup>rd</sup> Party Information exemption                                                                                  |
| 48  | Aug 17, 2018 | Email from Vimy Henderson to Michael<br>Becke re Sunday                                                                         | Not responsive                                                  | Yes; no exemptions identified                                                                                                                                                                          |
| 49  | Aug 21, 2018 | Email from Michael Becke to Mike Becke fwd<br>City of Hamilton – Interest in Hot in Place<br>Recycling & MTO Contract 2017-6029 | Not responsive                                                  | Yes; no exemptions identified                                                                                                                                                                          |
| 50  | Aug 27, 2018 | Email from Ludomir Uzarowski to Michael<br>Becke re RHVP                                                                        | Yes; possible s. 7 Advice and Recommendations exemption applies | Not responsive                                                                                                                                                                                         |
| 51  | Aug 30, 2018 | Email from Susan Jacob to Gord McGuire,<br>Michael Becke re Linc / RHVP paving                                                  | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies                                                                                                                                        |
| 52  | Aug 30, 2018 | Email from Gord McGuire to Susan Jacob re Linc / RHVP paving                                                                    | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies                                                                                                                                        |
| 53  | Sep 7, 2018  | Email from Michael Becke to Vimy<br>Henderson re 18100695 RHVP Samples                                                          | Not responsive                                                  | Yes; no exemptions identified                                                                                                                                                                          |
| 54  | Sep 17, 2018 | Email from Richard Andoga to Rodney<br>Aitchison re Linc and RHVP resurfacing –<br>traffic count stations                       | Not responsive                                                  | Yes; no exemptions identified                                                                                                                                                                          |

| <u>Tab</u> | <u>Date</u>  | Description                                                                                                                                                   | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018) |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| 55         | Oct 9, 2018  | Email from Michael Becke to Gord McGuire re RHVP Investigation Works for HIP – Maintenance support                                                            | Not responsive                                                  | Yes; no exemptions identified                                           |
| 56         | Oct 9, 2018  | Email from Michael Becke to Gord McGuire re RHVP Investigation Works for HIP – Maintenance support                                                            | REPEAT of TAB 55                                                |                                                                         |
| 57         | Oct 9, 2018  | Email from Michael Becke to Ludomir<br>Uzarowski re Enviro Tec HIPR 100% Hot In<br>Place Recycled Asphalt Paving; City of<br>Hamilton 1999 road list pictures | Not responsive                                                  | Yes; possible s. 10 3 <sup>rd</sup> Party Information exemption         |
| 58         | Oct 12, 2018 | Email from Sarath Vala to David Ferguson re<br>Red Hill Safety Assessment                                                                                     | Not responsive                                                  | Yes; no exemptions identified                                           |
| 59         | Oct 14, 2018 | Email from David Ferguson to Susan Jacob,<br>Chris Olszewski re RHVP/LINC Collision<br>Stats Update                                                           | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption applies         |
| 60         | Oct 16, 2018 | Email from Michael Becke to Ludomir<br>Uzarowski re Thursday Meeting – Discussion<br>topics                                                                   | Not responsive                                                  | Yes; no exemptions identified                                           |
| 61         | Oct 23, 2018 | Email from Gord McGuire to Michael Becke re Red Hill                                                                                                          | Not responsive                                                  | Arguably not responsive                                                 |
| 62         | Oct 24, 2018 | Email from Rich Shebib to Gord McGuire re<br>Lincoln Alexander Pkwy; Red Hill Valley                                                                          | Not responsive                                                  | Yes; no exemptions identified                                           |
| 63         | Oct 24, 2018 | Email from David Ferguson to Susan Jacob,<br>Robert Marques, Bob Paul, Ed Switenky,<br>Michael Becke, Alan J. Jazvac, Jeff Sherriff<br>re RHVP Data Request   | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption                 |
| 64         | Oct 24, 2018 | Email from Jeff Sherriff to David Ferguson,<br>Susan Jacob, Robert Marques, Bob Paul, Ed<br>Switenky, Michael Becke, Alan J. Jazvac re<br>RHVP Data Request   | Not responsive                                                  | Yes; possible s. 7 Advice and Recommendations exemption                 |

| <u>Tab</u> | <u>Date</u>  | <u>Description</u>                                                                                                                                                                                                                                          | Responsiveness to Request #1 re<br>Friction Testing (2013-2018) | Responsiveness to Request #2 re<br>Asphalt/Pavement Testing (2016-2018)                                                                |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 65         | Oct 24, 2018 | Email from Gord McGuire to Susan Jacob re<br>Spec inquiry – RHVP                                                                                                                                                                                            | Not responsive                                                  | Arguably not responsive; and possible s. 7 Advice and Recommendations exemption                                                        |
| 66         | Nov 1, 2018  | Email from Sarath Vala to Michael Becke re RHVP – Resurfacing                                                                                                                                                                                               | Not responsive                                                  | Yes; no exemptions identified                                                                                                          |
| 67         | Nov 2, 2018  | Email from David Ferguson to Soroush Salek re RHVP Roadside Safety Assessment                                                                                                                                                                               | Not responsive                                                  | Arguably not responsive                                                                                                                |
| 68         | Nov 2, 2018  | Email from Robert Marques to David<br>Ferguson, Soroush Salek re RHVP Roadside<br>Safety Assessment                                                                                                                                                         | Not responsive                                                  | Arguably not responsive                                                                                                                |
| 69         | Nov 7, 2018  | Email from Alireza Hadayeghi to Brian Malone, Soroush Salek, Giovani Bottesini, Martin White, David Ferguson, Susan Jacob, Michael Murry, Sarath Vala, Alireza Hadayeghi re B001014 Hamilton RHVP & LINC Roadside Safety Reviews – Kick-Off Meeting Minutes | Not responsive                                                  | Arguably not responsive                                                                                                                |
| 70         | Nov 7, 2018  | Email from Michael Becke to Soroush Salek,<br>David Ferguson re RHVP Roadside Safety<br>Assessment                                                                                                                                                          | Not responsive                                                  | Arguably not responsive                                                                                                                |
| 71         | Nov 28, 2018 | Email from Gord McGuire to Diana Cameron,<br>Dipankar Sharma re RHVP pavement testing<br>results (attached)                                                                                                                                                 | Not responsive                                                  | Not responsive because document created after the date of the FOI access request and therefore it falls outside of relevant time-frame |

#### **IMPORTANT TO NOTE:**

- 1. A copy of the "Red Hill Valley Parkway Safety Review" (October 2013) CIMA report should also be sent to Anne Watson. If this report has already been made public like the 2015 CIMA report, then it should be disclosed in its entirety.
- 2. Any Committee and Council reports dealing with (i) friction of RHVP (2013-2018) and (ii) asphalt and/or pavement of RHVP (2016-2018) should also be sent to Anne Watson.
- 3. Any relevant documents located by Mike Becke's office should be sent to Anne Watson (but may need to be reviewed by Legal Services first if there are any concerns about the content of same).
- 4. Anne Watson should be asked to also consider if there are any other MFIPPA exemptions that may apply to the records at hand (since there may be some that I have not identified and/or she may have a different opinion than me).

From:

MacNeil, Byrdena

Sent:

December 16, 2018 8:54 PM

To:

McGuire, Gord

Subject:

RE: Red Hill SMA

#### SOLICITOR-CLIENT PRIVILEGED

Yes, I already have this information too.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-16-18 8:48 PM

To: MacNeil, Byrdena Subject: FW: Red Hill SMA

More information that I think you already have.

The study attached on pg 4 indicates that after 700 days the FN is at the high 30's similar to the results of the RHVP.



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: Uzarowski, Ludomir < Ludomir\_Uzarowski@golder.com >

Sent: December 17, 2015 12:15 PM

To: Moore, Gary < Gary. Moore@hamilton.ca>

Subject: RE: Red Hill SMA

Hi Gary,

Please find attached the November 2013 report from Tradewind Scientific on friction testing on Red Hill Valley Parkway and Lincoln Alexander Parkway. I will look at some standards or anticipated values and call you.

Regards, Ludomir

Ludomir Uzarowski (Ph.D., P.Eng.) | Principal - Pavement and Materials Engineering | Golder Associates Ltd.

6925 Century Avenue, Suite #100, Mississauga, Ontario, Canada L5N 7K2
T: +1 (905) 567 4444 | D: +1 905 567 6100 Ext. 1528 | F: +1 (905) 567 6561 | C: +1 905 441 6044 | E: Ludomir Uzarowski@golder.com | www.golder.com

#### Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

Please consider the environment before printing this email.

From: Moore, Gary [mailto:Gary.Moore@hamilton.ca]

Sent: December 17, 2015 8:47 AM

To: Uzarowski, Ludomir Subject: FW: Red Hill SMA

Here's a summary of the skid resistance tests.

Immediately following construction of the RHVP in 2007, the Ontario Ministry of Transportation performed friction testing in both southbound lanes. The following table summarizes the results of this testing.

| Lane              | Average Friction Number | Friction Number Range |
|-------------------|-------------------------|-----------------------|
| Southbound Lane 1 | 33.9                    | 28.1 to 36.5          |
| Southbound Lane 2 | 33.8                    | 28.4 to 37.4          |

In 2013, the Friction Numbers were measured on the RHVP in both directions by Tradewind Scientific using a Grip Tester. The average FN numbers were as follows:

SB Right Lane 35

SB Left Lane 34

NB Right Lane 36

NB Left Lane 39

Hope this helps

Gary

Gary Moore, P.Eng Director Engineering Services Public Works Department Ext 2382

From:

MacNeil, Byrdena

Sent:

December 16, 2018 8:47 PM

To:

McGuire, Gord

Subject:

RE: Red Hill SMA

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord – yes, that is in the volume of documents I have. Thanks for confirming.

# Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-16-18 8:45 PM

To: MacNeil, Byrdena Subject: FW: Red Hill SMA

Hi Byrdena:

Have you received this email previously?



Gord McGuire, O.L.S., B.Sc. Director, Engineering Services Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcquire@hamilton.ca

From: Moore, Gary

Sent: January 24, 2014 11:59 AM

To: Thomas Dziedziejko <tomdz@amecorp.ca>

Subject: Red Hill SMA

Tom

He are a few pictures of the Red Hill, unfortunately I can't put my hands on any photos of the SMA going down (but it just looks like any other paving job). I have attached a few general Red Hill photo's you can use.

In general the SMA surface course was used as part of the Red Hill perpetual pavement system. Given we have no utilities or municipal appurtances (manholes, catchbasins, vaults, etc..) in the road we felt the extra cost of the SMA and the benefits of the higher skid resistance, reduced water spray, lower noise generation, etc, was warranted and would perform to it intended service life. On most urban roads that would have a high enough traffic volume to warrant a premium asphalt, I would have to consider the condition of any underlying municipal services (watermains and sewers), the potential for utility cuts and the potential service life of the pavement before considering SMA for urban road application.

Here's a summary of the skid resistance tests.

Immediately following construction of the RHVP in 2007, the Ontario Ministry of Transportation performed friction testing in both southbound lanes. The following table summarizes the results of this testing.

| Lane              | Average Friction Number | Friction Number Range |
|-------------------|-------------------------|-----------------------|
| Southbound Lane 1 | 33.9                    | 28.1 to 36.5          |
| Southbound Lane 2 | 33.8                    | 28.4 to 37.4          |

In 2013, the Friction Numbers were measured on the RHVP in both directions by Tradewind Scientific using a Grip Tester. The average FN numbers were as follows:

SB Right Lane 35 SB Left Lane 34

NB Right Lane 36

NB Left Lane 39

Hope this helps

Gary

#### Gary Moore, P.Eng

Director Engineering Services Public Works Department Ext 2382

Ps thoroughly enjoyed event last night! Thanks again Tom. Gary

From:

MacNeil, Byrdena

Sent:

December 16, 2018 7:31 PM

To:

McGuire, Gord; Auty, Nicole; Sabo, Ron; McLennan, John

Subject:

CIMA Report 2013 and FOI 18-189 - RHVP

Attachments:

Part 4 of 4 CIMA October 2013 RHVP Safety Review.pdf; Part 3 of 4 CIMA October 2013 RHVP Safety Review.pdf; Part 2 of 4 CIMA October 2013 RHVP Safety Review.pdf; Part 1 of 4 CIMA October 2013 RHVP Safety Review.pdf

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Attached, for your information and file, please find a copy of the "Red Hill Valley Parkway Safety Review" prepared by CIMA in October 2013 (am sending in 4 parts).

This has been produced to plaintiff's counsel as part of the City's AOD in the *Hansen* litigation being handled by Dana Lezau (Court File No.: 17-61728). Note that the report recommends that the City should perform friction testing.

Gord, it appears to me that this record is responsive to the FOI 18-189 access request, in the same way that the 2015 CIMA report is responsive. The 2013 report is also mentioned in the 2015 report at page 2 (para. 1) wherein it states:

"...In 2013, CIMA Canada Inc. (CIMA) conducted a safety review of the section of the RHVP between the Dartnall Road and Greenhill Avenue interchanges, providing a series of recommendations to improve safety."

I would recommend that this 2013 CIMA report be included in the volume of documents that are provided to Anne Watson in response to FOI 18-189.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From:

MacNeil, Byrdena

Sent:

December 12, 2018 5:06 PM

To:

Auty, Nicole; Sabo, Ron; McLennan, John

Subject:

FW: Asphalt VFM audit summary and actions to date:

Attachments:

image003.jpg; ATT00001.htm; image003.jpg; ATT00002.htm; STATEMENT OF

SCOPE & OBJECTIVES - Roads Deterioration 2.docx; ATT00003.htm

FYI ...

I don't know why the attachments aren't opening in the email itself. The main ones, as far as I can tell, are "ATT00001.htm (15KB)" which is Gord's document, and the "Statement of Scope & Objectives" which I presume is Audit's document.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-12-18 3:58 PM

To: MacNeil, Byrdena

Subject: Fwd: Asphalt VFM audit summary and actions to date:

Hi Byrdena.

FYI and your file as I had sent this to the GM PW on our audit process and review.

From:

MacNeil, Byrdena

Sent:

December 12, 2018 11:19 AM

To:

McGuire, Gord

Cc:

Sabo, Ron

Subject:

FOI 18-189 RHVP

Importance:

High

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

Ron and I were speaking about the RHVP FOI request after you and I had spoken yesterday. I advised him that we have the records relevant to the first part of the request (friction testing) from your office already but that the documents from the second part of the request (asphalt/pavement testing) are coming from Mike Becke's office.

If at all possible, we believe that completing the document search for the access request needs to be the top priority for Mike Becke's office at this point in time given:

- (i) that the request was submitted by Access & Privacy back in October; and
- (ii) it is important and best for us to have located all of the relevant documents before any report to Council goes ahead (which could be soon).

Is this something I should contact Mike Becke directly about or is there someone else who I should go through first?

Thanks, Byrdena

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From:

MacNeil, Byrdena

Sent:

December 12, 2018 10:51 AM

To:

Sabo, Ron; McLennan, John

Subject:

FW: Audit Issue

Sensitivity:

Confidential

Another fyi ...

Nicole was copied on the original email.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** December-11-18 4:31 PM **To:** MacNeil, Byrdena; Auty, Nicole

Subject: FW: Audit Issue Sensitivity: Confidential

More FYI



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcquire@hamilton.ca

From: McKinnon, Dan

Sent: December 11, 2018 4:25 PM

To: McGuire, Gord < Gord. McGuire@hamilton.ca>

**Subject:** Fwd: Audit Issue **Sensitivity:** Confidential

#### Sent from my iPhone

#### Begin forwarded message:

From: "McKinnon, Dan" < Dan. McKinnon@hamilton.ca>

Date: December 11, 2018 at 4:23:04 PM EST

To: "Brown, Charles" < Charles. Brown@hamilton.ca>

Subject: Re: Audit Issue

Hi Charles I'm happy to discuss but I have to tell you we need some appreciation for our work load at the moment. We are in the middle of capital budgets, Gord is in his position all of five months and has a key position vacant that being the manager of asset management which is critical to getting the budget approved. We are also currently responding to an FOI for the RHVP and organizing effort to respond to that. We will happily comply with your request but we need some time. Would you like me to organize a phone call?

Sent from my iPhone

On Dec 11, 2018, at 2:59 PM, Brown, Charles < Charles. Brown@hamilton.ca > wrote:

Dan

I am contacting you about the situation we have in our audit of Road Construction/Capital. We have reached an impasse on the issue of fulsome access to information respecting certain testing of pavement friction on Red Hill Cr Pkwy.

When we first asked for relevant consulting reports, we were given a report with redacted sections. When that got resolved, and we asked to meet with Gord McGuire to discuss further enquiries related to its content, we were advised this wasn't possible until January. We had provided a list of questions, presuming that at least a discussion of the situation with each question and the evidence we needed would facilitate better understanding, and help minimize the information burden. A half hour meeting was set up.

When my staff member came to the meeting however, Gord McGuire refused to answer any questions pertaining to this matter, or discuss it. Discussion about this issue having been shut down, the meeting ended.

This puts us in an untenable position which needs to be resolved. To that end I will be sending Gord an official notice of my request for the information. In the meantime I was hoping that you could intervene to effect a timely resolution. I've been keeping Mike Zegarac apprised of my thoughts and intentions on this matter, which is that we need to go deeper into the facts and circumstances surrounding the issue, insofar as what the situation was and is, and the processes that have been followed.

I am hopeful this can be resolved quickly and we can resume our work.

Thanks for your assistance.

Charles

# **Charles Brown**

Director of Audit Services
City Manager's Office
City of Hamilton
77 James St. N., Suite 400, Hamilton, ON - L8R 2K3
Phone: 905-546-2424 ext. 4469
Fax: 905-546-2573
Email: Charles.Brown@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From:

MacNeil, Byrdena

Sent:

December 12, 2018 10:49 AM

To:

Sabo, Ron; McLennan, John

Subject:

FW: Audit memo

Attachments:

Memo - Re Roads Construction.pdf

Importance:

High

Sensitivity:

Confidential

Just FYI

Nicole was copied on the original email from Gord.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** December-11-18 4:28 PM **To:** MacNeil, Byrdena; Auty, Nicole

**Subject:** FW: Audit memo **Importance:** High

Sensitivity: Confidential

FYI...



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: Brown, Charles

Sent: December 11, 2018 4:11 PM

To: McGuire, Gord <Gord.McGuire@hamilton.ca>

Cc: McKinnon, Dan <Dan.McKinnon@hamilton.ca>; Zegarac, Mike <Mike.Zegarac@hamilton.ca>

Subject: Audit memo Sensitivity: Confidential

Please see the attached memo

**Thanks** 

# **Charles Brown**

Director of Audit Services City Manager's Office City of Hamilton 77 James St. N., Suite 400, Hamilton, ON - L8R 2K3

Phone: 905-546-2424 ext. 4469 Fax: 905-546-2573

Email: Charles.Brown@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From:

MacNeil, Byrdena

Sent:

December 10, 2018 1:02 PM

To:

Sabo, Ron; Auty, Nicole; McLennan, John

Subject:

RE: RHVP

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Agreed, Ron. I did tell Gord that this really should be bumped up to Dan McKinnon (and/or Mike Zegarac) to put the brakes on the Audit meeting at this point in time. However, it did not appear that that was going to happen before the 1:30 p.m. meeting. Hence, why I gave him the advice I did.

Also, I forgot to say in my previous email that Gord mentioned that Edward Soldo, Director of Roads and Traffic, is now perhaps questioning using CIMA for future matters relating to the RHVP given the relationship between Brian Malone of CIMA and the fact that his wife, Betty Matthews-Malone, was the (former?) Director-Operations at the City of Hamilton during the years we are now reviewing as it relates to friction testing on the RHVP. It may be raised what information was shared or not shared between CIMA and the City as a result of this relationship. As well, even if everything was done perfectly, the City is still left with the optics of the relationship. Obviously, Edward would have to speak for himself on this though.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Sabo, Ron

Sent: December-10-18 12:45 PM

To: MacNeil, Byrdena

Cc: Auty, Nicole; McLennan, John

Subject: Re: RHVP Sensitivity: Confidential

Sorry to be doing this by email and I am a bit fuzzy headed today so take comments with a grain of salt; I don't like the optics if Gord goes away saying Legal said to cancel but I agree he should postpone if he's not actually able to answer and give that as his reason. Audit here is internal and just doing their work. If he hasnt already he should bump this up within PW as the questions posed are ones the City may have to answer internally in

short term and possibly transparently in near term. It would be much better for PW to get on top of full background and decisions on any reporting that needs to be done.

There will certainly be legal issues raised in potential and existing, possibly even concluded, litigation of multiple sorts but the road engineers etc need to weigh in on circumstances and appropriate responses.

R. A. Sabo

Deputy City Solicitor, Dispute Resolution Legal and Risk Management Services, Corporate Services City of Hamilton Office Phone 905 546 2424 ext. 3143 Fax 905 546 4370

City Of Hamilton
Legal and Risk Management Services
City Hall
71 Main Street West
Hamilton, ON
L8P 4Y5

Physical Office: 50 Main St. East, 4th Floor, Hamilton, ON

The contents of this message are privileged and confidential, intended only for recipients named by this sender above, and subject to solicitor-client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the included or intended recipient, please delete it and call 905 546 4520 to advise of an error in sending or receipt, collect if necessary when calling long distance. Thank you.

On Dec 10, 2018, at 12:17, MacNeil, Byrdena < Byrdena.MacNeil@hamilton.ca > wrote:

#### SOLICITOR-CLIENT PRIVILEGED

Gord McGuire telephoned me this morning. He has a meeting today with Dominic Pellegrini from Audit at 1:30 p.m. He is concerned about answering any of Dominic's questions (attached) but also doesn't want to be criticized for obstructing the Audit Office in their job. I advised him that it was far better for Dominic to be upset about not getting any answers today than it would be for Gord to try and provide even limited information. I advised Gord that he should cancel the meeting but if he doesn't cancel the meeting, he should simply listen to Dominic's concerns and questions but his answer to all of the pertinent questions needs to be "I am not in a position today to provide you with any answers to those questions."

Of note, Gord mentioned that, over the weekend, he reviewed a Draft 2018 CIMA report dealing with a safety analysis/review of the RHVP. It appears that the report indicates that wet weather performance of the RHVP has worsened since CIMA's 2015 report.

Gord mentioned that Roads and Traffic have put a number of safety reports to Council over the years dealing with the RHVP. I advised him that I became aware of (some of) these Council reports after I spoke with Dana Lezau this past Friday about litigation that

she is handling on behalf of the City – *Hansen v. Bernat and City of Hamilton* (Court File No.: 17-61728), and I reviewed the affidavit of documents served by the City in that litigation. I note that there are a number of paragraphs in those reports devoted to improving "safety and reducing collisions" on the RHVP, primarily focussing on reducing speeding and increasing aggressive driving enforcement and improving signage (which are all good things) but nowhere is it mentioned about any issue or concern with the friction of the road. (I did not tell Dana any details about the FOI access request or the documents discovered therein as I think that is best coming from Ron and/or Nicole.)

Finally, please note that Marco Oddi, Manager, Constructions Services (Roads) was examined for discovery on Friday, December 7th, in the *Hansen v. Bernat* matter and gave answers as to the state of the RHVP. I do not know what his answers were but they would bind the City.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

<Lines of Enquiry.xls>

From:

MacNeil, Byrdena

Sent:

December 10, 2018 12:17 PM

To:

Auty, Nicole; Sabo, Ron; McLennan, John

Subject:

RHVP

Attachments:

Lines of Enquiry.xls

Importance:

High

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Gord McGuire telephoned me this morning. He has a meeting today with Dominic Pellegrini from Audit at 1:30 p.m. He is concerned about answering any of Dominic's questions (attached) but also doesn't want to be criticized for obstructing the Audit Office in their job. I advised him that it was far better for Dominic to be upset about not getting any answers today than it would be for Gord to try and provide even limited information. I advised Gord that he should cancel the meeting but if he doesn't cancel the meeting, he should simply listen to Dominic's concerns and questions but his answer to all of the pertinent questions needs to be "I am not in a position today to provide you with any answers to those questions."

Of note, Gord mentioned that, over the weekend, he reviewed a Draft 2018 CIMA report dealing with a safety analysis/review of the RHVP. It appears that the report indicates that wet weather performance of the RHVP has worsened since CIMA's 2015 report.

Gord mentioned that Roads and Traffic have put a number of safety reports to Council over the years dealing with the RHVP. I advised him that I became aware of (some of) these Council reports after I spoke with Dana Lezau this past Friday about litigation that she is handling on behalf of the City – Hansen v. Bernat and City of Hamilton (Court File No.: 17-61728), and I reviewed the affidavit of documents served by the City in that litigation. I note that there are a number of paragraphs in those reports devoted to improving "safety and reducing collisions" on the RHVP, primarily focusing on reducing speeding and increasing aggressive driving enforcement and improving signage (which are all good things) but nowhere is it mentioned about any issue or concern with the friction of the road. (I did not tell Dana any details about the FOI access request or the documents discovered therein as I think that is best coming from Ron and/or Nicole.)

Finally, please note that Marco Oddi, Manager, Constructions Services (Roads) was examined for discovery on Friday, December 7th, in the *Hansen v. Bernat* matter and gave answers as to the state of the RHVP. I do not know what his answers were but they would bind the City.

# Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

December 10, 2018 10:34 AM

To:

McGuire, Gord

Subject:

RE: RHVP

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

Thanks for your email. No, we have not contacted CIMA yet because we are still working on how we are going to put the request to them in order to best move forward from a legal perspective.

I would strongly advise that you <u>not</u> speak with CIMA about this matter until you have heard back from us/Nicole. We should be able to update you this week (I hope by mid-week).

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-08-18 4:53 PM

To: MacNeil, Byrdena Subject: FW: RHVP

Hi Byrdena:

Did you get a hold of the CIMA contact via Edward?

I was wondering and if so could I talk to CIMA confidentially.



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

| From: Brian Malone <brian.malone@<br>Sent: December 8, 2018 4:37 PM<br/>To: McGuire, Gord <gord.mcguire@<br>Subject: Re: RHVP</gord.mcguire@<br></brian.malone@<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No they have not contacted me. Have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e they called the office.                                                                                                                                                                        |
| BRIAN MALONE, P.Eng., PTOE<br>Partner / Vice President, Transportat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion / Traffic Engineering                                                                                                                                                                       |
| T 289-288-0287 ext. 6802 <b>M</b> 905-46<br>3027 Harvester Road, Suite 400, Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                  |
| X National and Administration an | <b>x</b>                                                                                                                                                                                         |
| Do you really need to print this email? Let's pr<br>CONFIDENTIALITY WARNING This e-mail is<br>delete it in its entirety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rotect the environment! confidential. If you are not the intended recipient, please notify the sender immediately and                                                                            |
| On Dec 8, 2018, at 13:55, McGuire, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gord < Gord. McGuire@hamilton.ca > wrote:                                                                                                                                                        |
| Hi Brian. Did our legal group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | get in touch with you on the safety report?                                                                                                                                                      |
| Thanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                  |
| X Managamaniana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gord McGuire, O.L.S., B.Sc.  Director, Engineering Services  Public Works Department   Engineering Services Division    City of Hamilton  77 James Street North, Suite 320  Hamilton, ON L8R 2K3 |

T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From:

MacNeil, Byrdena

Sent:

December 7, 2018 2:30 PM

To:

McLennan, John

Subject:

**RHVP** 

Sensitivity:

Confidential

Hi John,

Can you please let me know when you are back in your office? I have your copy of the documents. Thanks.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

December 7, 2018 11:24 AM

To:

Auty, Nicole FW: RHVP

Subject: Attachments:

Part 1 of 6 Performance Review after Six Years of Service.pdf

Here is Part 1 of 6 of the Golder Report

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Delry, Pam

Sent: December-07-18 11:14 AM

To: MacNeil, Byrdena Subject: RHVP



City of Hamilton Legal and Risk Management Services Mailing Address: City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

#### Pam Delry

Legal Assistant Legal and Risk Management Services, Corporate Services City of Hamilton

Phone: 905.546.2424 ext. 3981

Fax: 905.546.4370

Courier/Service Address: 50 Main Street East, 5th Flr, Hamilton, ON L8N 1E9

This electronic transmission, including all attachments, is directed in confidence solely to the person(s) to which it is addressed, or an authorized recipient, and may not otherwise be distributed, copied, printed or disclosed. Any review or distribution by others is strictly prohibited. If you have received this electronic transmission in error, please notify the sender immediately by return electronic transmission and then immediately delete this transmission, including all attachments, without copying, printing distributing or disclosing same. Opinions, conclusions or other information expressed or contained in this email are not given or endorsed by the sender unless otherwise affirmed independently by the sender. Thank you.

From:

MacNeil, Byrdena

Sent:

December 7, 2018 11:03 AM

To:

Auty, Nicole

Subject:

RHVP Reports for Outside Counsel's Review

Attachments:

Tradewind Scientific Report (January 2014).pdf; RHVP Pavement Testing

Results Nov 28, 2018.pdf; CIMA Report (November 2015).pdf

Sensitivity:

Confidential

Hi Nicole,

Further to our discussion of this morning, here are three of the four main reports (as identified by Gord McGuire) in electronic version:

- 1. Tradewind Scientific Report (January 2014)
- 2. CIMA Report (November 2015)
- 3. RHVP Pavement Testing Results Nov 28, 2018

I have to send the fourth report – Golder Report (Draft) on Performance Review - in parts because it is too large as a whole. So I will send that by way of separate emails.

Thanks, Byrdena

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

December 7, 2018 10:30 AM

To: Cc: McGuire, Gord Auty, Nicole

Subject:

RE: Safety Analysis of the Red Hill Valley Parkway

Thanks, Gord.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** December-07-18 10:06 AM **To:** MacNeil, Byrdena; Auty, Nicole

Subject: Fwd: Safety Analysis of the Red Hill Valley Parkway

FYI on the RHVP internal audit.



Gord McGuire, O.L.S., B.Sc.

Director, Engineering Services

Public Works Department | Engineering Services Division |

City of Hamilton

77 James Street North, Suite 320

Hamilton, ON L8R 2K3

T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

Begin forwarded message:

From: "McGuire, Gord" < Gord. McGuire@hamilton.ca>

Date: December 7, 2018 at 10:03:49 AM EST

To: "Pellegrini, Domenic" < Domenic.Pellegrini@hamilton.ca>

Cc: "McKinnon, Dan" < Dan.McKinnon@hamilton.ca >, "Minard, Brigitte"

<Brigitte.Minard@hamilton.ca>, "Brown, Charles" <Charles.Brown@hamilton.ca>

Subject: Re: Safety Analysis of the Red Hill Valley Parkway

Thanks Domenic.

Given that I'm in tax capital budget today where GIC just deferred approval until mid January and I will be reacting to the expected requests from council my schedule will be occupied by this until council approval. I won't be able to turn my attention to your requests in the immediate term.

As well there is significant effort being undertaken to respond to the ongoing MFIPPA request as previously detailed.

My remaining vacation schedule is also crowding out working days in 2018.

After I get through the budget and MFIPPA I will be able to turn my attention to this request. I suggest we defer until January 2019 and reconnect.

Thanks in advance.



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton
77 James Street North, Suite 320
Hamilton, ON L8R 2K3
T: 905.546.2424, Extension 2439
gord.mcguire@hamilton.ca

On Dec 7, 2018, at 9:37 AM, Pellegrini, Domenic < <a href="Domenic.Pellegrini@hamilton.ca">Domenic.Pellegrini@hamilton.ca</a> wrote:

Good morning Dan and Gord,

I was hoping to meet with Gord on Monday December 10<sup>th</sup>. Present the Lines of Enquiry document attached to the email sent yesterday and from there determine how much work is required so as to assess a realistic project deadline.

Thus far I've only received a tentative acceptance to my meeting request.

**Thanks** 

Domenic Pellegrini CPA, CMA, CIA Senior Internal Auditor Audit Services Division City Manager's Office, City of Hamilton T: (905) 546-2424 Ext. 2207

## Domenic.Pellegrini@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From: McKinnon, Dan

Sent: December-07-18 7:14 AM

To: Pellegrini, Domenic

Subject: Fwd: Safety Analysis of the Red Hill Valley Parkway

Hi Domenic, what deadline are you working toward as it is an extraordinarily busy time at the moment? Budgets, this large FOI request and the fact that Gord does not currently have a manager of asset management is creating significant pressures.

Sent from my iPhone

Begin forwarded message:

From: "McGuire, Gord" < Gord.McGuire@hamilton.ca>

Date: December 6, 2018 at 5:02:26 PM EST

To: "McKinnon, Dan" < Dan. McKinnon@hamilton.ca>

Subject: FW: Safety Analysis of the Red Hill Valley Parkway

FYI re: the audit and my ability to respond. I will need to be engaed in the MFIPPA reposne in the short term.

From:

MacNeil, Byrdena

Sent:

December 6, 2018 5:17 PM

To:

Auty, Nicole

Cc:

Sabo, Ron

Subject:

FW: Safety Analysis of the Red Hill Valley Parkway

Attachments:

Lines of Enquiry.xls

Importance:

High

Just fyi, questions being asked by Audit (see attachment).

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-06-18 5:04 PM

To: MacNeil, Byrdena

Subject: FW: Safety Analysis of the Red Hill Valley Parkway

Importance: High

FYI and as discussed..



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: Pellegrini, Domenic

Sent: December 6, 2018 3:07 PM

To: McGuire, Gord < Gord. McGuire@hamilton.ca>

Cc: Minard, Brigitte <Brigitte.Minard@hamilton.ca>; Brown, Charles <Charles.Brown@hamilton.ca>

Subject: FW: Safety Analysis of the Red Hill Valley Parkway

Importance: High

Hi Gord,

Further to my meeting request from earlier today, please refer to the attached document for the questions and concerns that I would like to touch on for our upcoming meeting.

**Thanks** 

Domenic Pellegrini CPA, CMA, CIA Senior Internal Auditor Audit Services Division City Manager's Office, City of Hamilton T: (905) 546-2424 Ext. 2207

### Domenic.Pellegrini@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From: Pellegrini, Domenic Sent: December-06-18 9:35 AM

To: McGuire, Gord

Cc: Minard, Brigitte; Brown, Charles

Subject: Safety Analysis of the Red Hill Valley Parkway

Importance: High

Good morning Gord,

Audit Services has come across a report that appears to have been approved by Traffic Operations regarding the safety of the Red Hill Valley Parkway. The Report is entitled "Red Hill Valley Parkway Detailed Safety Analysis", completed in November 2015. Can we have a copy of this report? Would you know whether the recommendations made by this report been implemented?

Also, could you please provide information on any other reports regarding the safety of the Red Hill Valley Parkway especially if they relate to the slipperiness of the pavement?

Thanks in advance for your assistance.

Domenic Pellegrini CPA, CMA, CIA Senior Internal Auditor Audit Services Division City Manager's Office, City of Hamilton T: (905) 546-2424 Ext. 2207

## Domenic.Pellegrini@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From:

MacNeil, Byrdena

Sent:

December 4, 2018 5:49 PM

To:

Auty, Nicole Sabo, Ron

Cc: Subject:

RHVP Reports

Attachments:

CIMA Report (November 2015).pdf; Tradewind Scientific Report (January

2014).pdf

Sensitivity:

Confidential

#### STRICTLY CONFIDENTIAL

Hi Nicole.

Further to our discussion of this afternoon, here are two of the four key reports. The third one (Golder) is very large and still hasn't appeared in my inbox yet although scanned. I will send it and the fourth (smaller one) along to you tomorrow.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

December 4, 2018 2:13 PM

To:

Auty, Nicole; Sabo, Ron

Subject:

FW: RE: Redhill Valley Expressway Report

Importance:

High

FYI

In my discussion with Gord today, I asked whether there was a possibility that the Audit department could inadvertently release information about the friction testing reports that could end up being discovered by any councillors before there has been a chance by PW and/or Legal Services to report on the issue to Council. We had no answer between us so I am raising it with you.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-04-18 1:57 PM

To: MacNeil, Byrdena Cc: McKinnon, Dan

Subject: FW: RE: Redhill Valley Expressway Report

Importance: High

Hi Byrdena:

As per our conversation today re: the copying of our MFIPPA related documents by the auditor.

We had discussed the concerns about the sensitivity of our materials responsive to the RHVP friction testing MFIPPA request (external) and the overlap with the auditors current value for money audit on our asphalts (City Wide and internal). The value for money audit has been underway for a few months and we had not yet fully assembled the performance, QA and technical documentation to respond.

The position you had advised was to provide the auditor our 2014 Golder RHVP report records on the RHVP inclusive of the condition assessment. But we would redact the friction testing related materials until such time as the MFIPPA response had been fully analyzed.

Our position was to offer the auditor reading access to the file at my office. That is laid out below in my email to Domenic. Once the MFIPPA access had been determined then we would release the document in its entirety.

However today the auditor visited my office while I was in a meeting and made copies of the report. He mentioned that staff allowed it but I had previously discussed access to these files with him and thought that our approach was understood.

I'm concerned that the audit now has records that may be released prior to our MFIPPA response. This may influence our position on this file, I may be over reacting but feel this is an element that requires some higher level understanding. As such I've copied Dan McKinnon.

Can you advise of our possible next steps.



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: McGuire, Gord

Sent: December 4, 2018 11:08 AM

To: Auty, Nicole < Nicole.Auty@hamilton.ca>
Subject: FW: RE: Redhill Valley Expressway Report



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: McGuire, Gord

Sent: December 3, 2018 4:26 PM

To: Pellegrini, Domenic < Domenic.Pellegrini@hamilton.ca >; Sharma, Dipankar

<Dipankar.Sharma@hamilton.ca>

Cc: Brown, Charles < Charles. Brown@hamilton.ca >; Minard, Brigitte < Brigitte. Minard@hamilton.ca >; Cameron,

Diana < Diana. Cameron@hamilton.ca >; MacNeil, Byrdena < Byrdena. MacNeil@hamilton.ca >

Subject: RE: RE: Redhill Valley Expressway Report

Hi Domenic:

Possibly there is some miscommunication here and we are happy to have you review the file. We have a copy here and you can arrange with Diana to come and see the copy. The Solicitor on the file is cc'd as well, and she is Byrdena MacNeil.

The data we have withheld, at Legal Services advise, is related to friction testing and subject to an FOI / MFIPPA request on that subject. There is ongoing and pending litigation on this matter and we're following their advice. The MFIPPA process will be shorter than months from my understanding.

We have redacted the paragraphs and there is one appendix of 13 pages related to the friction characteristics that we discussed and as noted are available here for your review.

Please contact Diana for access to this file.

#### Thanks



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: Pellegrini, Domenic

Sent: December 3, 2018 4:11 PM

**To:** Sharma, Dipankar < <u>Dipankar.Sharma@hamilton.ca</u>>; McGuire, Gord < <u>Gord.McGuire@hamilton.ca</u>> **Cc:** Brown, Charles < <u>Charles.Brown@hamilton.ca</u>>; Minard, Brigitte < <u>Brigitte.Minard@hamilton.ca</u>>

Subject: RE: RE: Redhill Valley Expressway Report

Importance: High

Good afternoon Gord and Dipankar,

In order to properly understand the analysis and recommendations made by the Consultant (Golder Associates) on the state of the Redhill Valley Expressway, Audit Services needs to see the un-redacted version of the report. We cannot wait until Legal Services has completed their review. This process may take months and will have an impact on Audit Services completing its review!

If this presents a problem, please provide the name of the Solicitor in Legal Services that advised you of this so that Audit Services may discuss this matter directly with the Solicitor. As it is two whole paragraphs have been redacted impacting the analysis and recommendation made by the Consultant.

Thank you in advance for your assistance on this matter.

Domenic Pellegrini CPA, CMA, CIA Senior Internal Auditor

# Audit Services Division City Manager's Office, City of Hamilton T: (905) 546-2424 Ext. 2207

### Domenic.Pellegrini@hamilton.ca

This e-mail and any files transmitted with it are strictly confidential and intended solely for the use of the individual or entity to whom it is addressed. This e-mail and any files transmitted with it contain personal information protected by the Municipal Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. M.56. If you are not the named addressee, you should not read, disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify Charles Brown immediately and delete the e-mail from your system. If you are not the intended recipient you are notified that reading, disclosing, copying, distributing or taking any action in reliance on the contents of this e-mail is strictly prohibited by law.

E-mail transmission cannot be guaranteed to be secure or error-free as information can be intercepted, corrupted, lost, destroyed, delayed, or contain viruses. The sender therefore does not accept liability, and disclaims any and all responsibility, for any inaccuracy, error, or omission arising from the transmission of this e-mail.

From: Sharma, Dipankar

Sent: November-27-18 10:06 AM

**To:** Pellegrini, Domenic **Cc:** McGuire, Gord

Subject: RE: Redhill Valley Report

Hi Domenic,

The Redhill report that redacted as advised by legal. Engineering service received a FOI on Redhill; the complete report and other related documents are currently being reviewed by Legal. Once this review is complete, we will provide the complete/non-redacted package for your review.

Should you have any questions, please feel free to give me a call.

Thank you



Dipankar Sharma, PMP, P.ENG.
Senior Project Manager
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 3016 diana.cameron@hamilton.ca

From:

MacNeil, Byrdena

Sent:

December 4, 2018 1:56 PM

To:

'McGuire, Gord'

Cc:

Auty, Nicole; Sabo, Ron

Subject:

FW: AC8141, Your File # 055807

Attachments:

AC8141, Letter to City of Hamilton, Dec 4, 2018.pdf

#### SOLICITOR-CLIENT PRIVILEGED

Okay. Thanks for letting us know, Gord.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: December-04-18 1:52 PM

To: MacNeil, Byrdena

**Subject:** FW: AC8141, Your File # 055807

More interest in the RHVP files.



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca

From: Jacob, Susan

Sent: December 4, 2018 1:50 PM

To: McGuire, Gord <Gord.McGuire@hamilton.ca>

Subject: FW: AC8141, Your File # 055807

## Regards

#### Susan

From: Marques, Robert

Sent: December-04-18 1:03 PM

To: Lagana, Dominic; Paul, Bob; Searles, John

Cc: Jacob, Susan; Soldo, Edward

Subject: FW: AC8141, Your File # 055807

Dominic,

I've copied Susan Jacob on this email to assist you with a response.

Susan's group would oversee any testing from the Redhill and provide comment on why it is being redone.

Bob

From: Lagana, Dominic

Sent: December 4, 2018 1:01 PM

To: Searles, John < John. Searles@hamilton.ca>

Cc: Paul, Bob <Bob.Paul@hamilton.ca>; Marques, Robert <Robert.Margues@hamilton.ca>

Subject: FW: AC8141, Your File # 055807

Hi John:

Please see attached letter our office received from the Insurance Adjuster representing the trucking company concerning the MVA on Red Hill. On Nov 22, 2018.

Sincerely



City of Hamilton Legal and Risk Management Services City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca Dominic Lagana, C.I.P.

Claims Analyst

Legal and Risk Management Services, Corporate Services

City of Hamilton

Phone: 905-546-2424 ext. 5739

Fax: 905.540-5744

Physical Office: 50 Main St. East, 4th Floor, Hamilton, ON

From: Sean Adamson [mailto:sean@adamsonclaims.com]

Sent: Tuesday, December 04, 2018 12:29 PM

To: Lagana, Dominic

Subject: AC8141, Your File # 055807

Hello, Dominic, please refer to the attached, thanks.

Sean Adamson, BSc, CIP
Adamson Claims Services Inc.
PO Box 99012, Heritage Green
Stoney Creek, On, L8J 2P7
sean@adamsonclaims.com
(B) 905-560-4920
(C) 289-253-7409
www.adamsonclaims.com

From:

MacNeil, Byrdena

Sent:

December 3, 2018 12:30 PM

To:

Auty, Nicole

Subject:

RE: RHVP MFIPPA

Yes. Will do. Thx.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Auty, Nicole

Sent: December-03-18 12:30 PM

To: MacNeil, Byrdena Subject: RE: RHVP MFIPPA

Yes, can you come by around 130?



City of Hamilton Legal and Risk Management Services Mailing address: City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

#### **Nicole Auty**

City Solicitor Legal and Risk Management Services Phone: 905.546.2424 ext. 4636

Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

The contents of this message are privileged and confidential, intended only for the recipients named above, and are subject to solicitor and client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please delete it and call 905 546 4520, collect if calling long distance. Thank you.

From: MacNeil, Byrdena

Sent: December-03-18 12:25 PM

To: Auty, Nicole

Subject: RE: RHVP MFIPPA

Hi Nicole,

Will you have time this afternoon to speak about the RHVP matter?

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Auty, Nicole

Sent: November-30-18 10:11 AM

To: MacNeil, Byrdena Subject: RHVP MFIPPA

Byrdena,

I am working from home today, can you let me know when you're available to speak about the RHVP MFIPPA file, we can talk today on the phone or I'm back in the office Monday.



City of Hamilton Legal and Risk Management Services Mailing address: City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5

www.hamilton.ca

# **Nicole Auty**

City Solicitor Legal and Risk Management Services Phone: 905.546.2424 ext. 4636 Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From:

MacNeil, Byrdena

Sent:

December 3, 2018 12:25 PM

To:

Auty, Nicole

Subject:

RE: RHVP MFIPPA

Hi Nicole,

Will you have time this afternoon to speak about the RHVP matter?

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Auty, Nicole

Sent: November-30-18 10:11 AM

To: MacNeil, Byrdena Subject: RHVP MFIPPA

Byrdena,

I am working from home today, can you let me know when you're available to speak about the RHVP MFIPPA file, we can talk today on the phone or I'm back in the office Monday.



City of Hamilton Legal and Risk Management Services Mailing address: City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### **Nicole Auty**

City Solicitor Legal and Risk Management Services Phone: 905.546.2424 ext. 4636 Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From:

MacNeil, Byrdena

Sent:

November 30, 2018 12:16 PM

To:

Auty, Nicole

Subject:

RE: RHVP MFIPPA

Hi Nicole – sorry for the delay in getting back to you – crazy morning! Are you still available this afternoon to chat? I am just going to take my lunch now but can talk at 1:00 pm or thereafter ... Otherwise, I am in the office on Monday (but meeting with Gord McGuire first thing that morning at his office.)

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Auty, Nicole

Sent: November-30-18 10:11 AM

To: MacNeil, Byrdena Subject: RHVP MFIPPA

Byrdena,

I am working from home today, can you let me know when you're available to speak about the RHVP MFIPPA file, we can talk today on the phone or I'm back in the office Monday.



City of Hamilton Legal and Risk Management Services Mailing address: City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### **Nicole Auty**

City Solicitor Legal and Risk Management Services Phone: 905.546.2424 ext. 4636

Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From:

MacNeil, Byrdena

Sent:

November 30, 2018 10:25 AM

To:

Cameron, Diana; McGuire, Gord

Subject:

RE: Material for Monday

Received, thanks!

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Cameron, Diana

Sent: November-30-18 9:18 AM
To: McGuire, Gord; MacNeil, Byrdena
Subject: RE: Material for Monday

Currently being delivered by a student. You should receive the envelope shortly.

Regards,



Diana Cameron

Administrative Assistant II
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 4867 diana.cameron@hamilton.ca

From: McGuire, Gord

Sent: November-30-18 8:59 AM

**To:** MacNeil, Byrdena **Cc:** Cameron, Diana

Subject: Material for Monday

# Hi Byrdena:

I'm sending over some additional documents on the RHVP that refer to the FOI request.

If you have questions please call.

My cell is great if you cant reach my office line.

Thanks



Gord McGuire, O.L.S., B.Sc.
Director, Engineering Services
Public Works Department | Engineering Services Division |

City of Hamilton 77 James Street North, Suite 320 Hamilton, ON L8R 2K3 T: 905.546.2424, Extension 2439 gord.mcguire@hamilton.ca



From:

MacNeil, Byrdena

Sent:

November 22, 2018 11:21 AM

To:

McGuire, Gord; Watson, Anne

Subject:

FOI 18-189 - RHVP

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord and Anne,

Gord - Just to update you, Anne Watson and I spoke this morning about the RHVP access request and the Information Sheet sent to her setting out our request for a time extension. Unfortunately, it turns out that Anne was also expecting to be sent documents located by your office in a sample search so that she could prepare a letter to the requester setting out a fee estimate and time extension to deal with the request. As you may recall from one of our conversations, Anne and I had discussed doing the sample search but I thought it was only relevant to you being able to properly estimate (in order to complete the Information Sheet) the additional time your office would need to locate and review responsive documents. I have explained to Anne that this misunderstanding was my fault since I had only envisioned a time extension letter going out to the requester, and not any fee request respecting the estimated volume of documents (for which she needed the sample search documents).

Anne – I hope I cleared things up and I apologize again for the misunderstanding.

Thanks, Byrdena

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

November 14, 2018 6:25 PM

To:

Cameron, Diana

Subject:

RE: RHVP

Sensitivity:

Confidential

Okay, thanks, Diana! Gord and I connected by phone.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Cameron, Diana

Sent: November-14-18 4:49 PM

To: MacNeil, Byrdena Subject: RE: RHVP Sensitivity: Confidential

Hi Byrdena,

Gord was not available at 4:15 but if you are available now you can reach out to him on his

cell at



Diana Cameron
Administrative Assistant II
Public Works Department | Engineering Services Division |

City of Hamilton
77 James Street North, Suite 320
Hamilton, ON L8R 2K3
T: 905.546.2424, Extension 4867
diana.cameron@hamilton.ca

From: MacNeil, Byrdena

Sent: November-14-18 1:14 PM

To: McGuire, Gord

Subject: RHVP

Sensitivity: Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord.

I received the package, thanks. I will quickly review it. I have two meetings this afternoon until probably 4:15 pm. Are you able to chat after that?

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

November 14, 2018 1:14 PM

To:

McGuire, Gord

Subject:

**RHVP** 

Sensitivity:

Confidential

#### SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

I received the package, thanks. I will quickly review it. I have two meetings this afternoon until probably 4:15 pm. Are you able to chat after that?

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

From:

MacNeil, Byrdena

Sent:

November 14, 2018 9:49 AM

To:

Sabo, Ron

Subject:

Attachments:

FW: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services RE: Red Hill SMA; Red Hill SMA; FW: Friction on SMA on Hamilton's Red Hill Valley Parkway; Red Hill Counts; Hamilton\_LA-RHV\_Rev2.doc; Red hill review

GMC Summary.doc

Sensitivity:

Confidential

As discussed, here is what I have received to date.

#### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: November-11-18 7:23 PM

To: MacNeil, Byrdena

Subject: RE: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity: Confidential

Hi Byrdena:

Please see a series of attachments re: this file.

I have summarized the events as best as I can in the attachment labelled Red Hill Review GMc.

Please contact me about times to review.

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439 From: MacNeil, Byrdena

Sent: November 9, 2018 3:04 PM

To: McGuire, Gord <Gord.McGuire@hamilton.ca>
Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High
Sensitivity: Confidential

# SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

Ron Sabo has asked me to assist you with the matter below. Do you have time to chat on Monday, November 12th? I am free any time after 10:30 a.m.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about **friction testing** on the Red Hill Valley Parkway in the **last five years** AND any reports, memos (including drafts), or correspondence about **asphalt and/or pavement testing, assessments, plans** on the Red Hill Valley Parkway in the last **two years** 

Regards
Gord McGuire O.L.S., B.Sc.
Director of Engineering Services
Public Works
905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

**To:** Moore, Gary <<u>Gary.Moore@hamilton.ca</u>> **Cc:** McGuire, Gord <<u>Gord.McGuire@hamilton.ca</u>>

**Subject:** FW: FOI #18-189

Importance: High
Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron Administrative Assistant II Engineering Services Division City of Hamilton, Public Works 905-546-2424, Ext.4867

From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189

Importance: High Sensitivity: Confidential

Hi Diana.

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy Cc: Rashford, Debbie-Ann Subject: FOI #18-189 Importance: High Sensitivity: Confidential

Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15**, 2018?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson
Access & Privacy Officer
Corporate Services
City of Hamilton
71 Main Street West, 1st Floor
HAMILTON ON L8P 4Y5
Phone (905) 546-2424 ext. 4632

# MacNeil, Byrdena

From:

MacNeil, Byrdena

Sent:

November 12, 2018 10:52 AM

To:

McGuire, Gord

Subject:

RE: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity:

Confidential

Yes

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: November-12-18 10:52 AM

To: MacNeil, Byrdena

Subject: Re: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity: Confidential

My schedule has changed. Are you available this afternoon after 3?

Gord McGuire O.L.S. Director of Engineering Services Public Works, City of Hamilton 905-546-2424 x2439

On Nov 12, 2018, at 10:40 AM, MacNeil, Byrdena <Byrdena.MacNeil@hamilton.ca> wrote:

HI Gord,

Yes, I can chat tomorrow, November 13th about this. Any time after 10:00 a.m.. Is there a time you prefer?

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9

Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: November-11-18 7:23 PM

To: MacNeil, Byrdena

Subject: RE: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity: Confidential

Hi Byrdena:

Please see a series of attachments re: this file.

I have summarized the events as best as I can in the attachment labelled Red Hill Review GMc.

Please contact me about times to review.

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: MacNeil, Byrdena

Sent: November 9, 2018 3:04 PM

To: McGuire, Gord < Gord. McGuire@hamilton.ca >

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High
Sensitivity: Confidential

SOLICITOR-CLIENT PRIVILEGED

Hi Gord,

Ron Sabo has asked me to assist you with the matter below. Do you have time to chat on Monday, November 12th? I am free any time after 10:30 a.m.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about friction testing on the Red Hill Valley Parkway in the last five years AND any reports, memos (including drafts), or correspondence about asphalt and/or pavement testing, assessments, plans on the Red Hill Valley Parkway in the last two years

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

**To:** Moore, Gary <<u>Gary.Moore@hamilton.ca</u>> **Cc:** McGuire, Gord <<u>Gord.McGuire@hamilton.ca</u>>

Subject: FW: FOI #18-189

Importance: High
Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron Administrative Assistant II Engineering Services Division City of Hamilton, Public Works 905-546-2424, Ext.4867 From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189

Importance: High Sensitivity: Confidential

Hi Diana,

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy
Cc: Rashford, Debbie-Ann
Subject: FOI #18-189
Importance: High
Sensitivity: Confidential

Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15**, 2018?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson Access & Privacy Officer Corporate Services City of Hamilton 71 Main Street West, 1<sup>st</sup> Floor HAMILTON ON L8P 4Y5 Phone (905) 546-2424 ext. 4632

## MacNeil, Byrdena

From:

MacNeil, Byrdena

Sent:

November 12, 2018 10:40 AM

To:

McGuire, Gord

Subject:

RE: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity:

Confidential

HI Gord,

Yes, I can chat tomorrow, November 13th about this. Any time after 10:00 a.m.. Is there a time you prefer?

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

Sent: November-11-18 7:23 PM

To: MacNeil, Byrdena

Subject: RE: FOI #18-189 - RHVP Friction testing request - Meet with Legal Services

Sensitivity: Confidential

Hi Byrdena:

Please see a series of attachments re: this file.

I have summarized the events as best as I can in the attachment labelled Red Hill Review GMc.

Please contact me about times to review.

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439 From: MacNeil, Byrdena

Sent: November 9, 2018 3:04 PM

To: McGuire, Gord <Gord.McGuire@hamilton.ca>
Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

### SOLICITOR-CLIENT PRIVILEGED

Hi Gord.

Ron Sabo has asked me to assist you with the matter below. Do you have time to chat on Monday, November 12th? I am free any time after 10:30 a.m.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637 f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about friction testing on the Red Hill Valley Parkway in the last five years AND any reports, memos (including drafts), or correspondence about asphalt and/or pavement testing, assessments, plans on the Red Hill Valley Parkway in the last two years

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

**To:** Moore, Gary <<u>Gary.Moore@hamilton.ca</u>> **Cc:** McGuire, Gord <<u>Gord.McGuire@hamilton.ca</u>>

Subject: FW: FOI #18-189 Importance: High Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron Administrative Assistant II Engineering Services Division City of Hamilton, Public Works 905-546-2424, Ext.4867

From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189 Importance: High Sensitivity: Confidential

Hi Diana.

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy Cc: Rashford, Debbie-Ann Subject: FOI #18-189 Importance: High Sensitivity: Confidential

Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15, 2018**?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson
Access & Privacy Officer
Corporate Services
City of Hamilton
71 Main Street West, 1st Floor
HAMILTON ON L8P 4Y5
Phone (905) 546-2424 ext. 4632

## MacNeil, Byrdena

From:

MacNeil, Byrdena

Sent:

November 12, 2018 10:40 AM

To:

Edwards, Debbie

Subject:

RE: FOI #18-189 - RHVP Friction testing request

Sensitivity:

Confidential

Hi Debbie - yes, whenever you are free today to chat, I can come up. I am free right now, if you are?

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Edwards, Debbie

Sent: November-11-18 3:43 PM

To: MacNeil, Byrdena

Subject: FW: FOI #18-189 - RHVP Friction testing request

Sensitivity: Confidential

The contents of this email transmission are privileged and confidential, intended ONLY for the recipients named above and subject to lawyer and client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this email and are not the intended recipient, please destroy it and call 905-546-2424, ext. 2628, collect if long distance. Thank you.

Hi Byrdena. Given the email from Ron below, I am happy to have you reach out to Gord but want to make sure that you are aware of his sensitivity and context. Please let me know if you have a few minutes to chat on Monday (tomorrow)! Thanks Byrdena. Debbie



City of Hamilton Legal and Risk Management Services Division City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### Deborah A. Edwards

Deputy City Solicitor, Commercial, Development and Policy Legal and Risk Management Services Division, Corporate Services City of Hamilton

Phone: 905.546.2424 ext. 2628

Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From: Sabo, Ron

Sent: November-09-18 2:44 PM

To: Edwards, Debbie

Subject: RE: FOI #18-189 - RHVP Friction testing request

Sensitivity: Confidential

I've asked Byrdena to touch base with Gord. Ultimately the advice here if any would be for the FOI office as they are making the decision on the FOI response.



City of Hamilton Legal and Risk Management Services City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### R. A. Sabo

Deputy City Solicitor, Dispute Resolution Legal and Risk Management Services, Corporate Services City of Hamilton

Phone: 905.546.2424 ext. 3143

Fax: 905.546.4370

Physical Office: 50 Main St. East, 4th Floor, Hamilton, ON

The contents of this message are privileged and confidential, intended only for recipients named by this sender above, and subject to solicitor-client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the included or intended recipient, please delete it and call 905 546 4520 to advise of an error in sending or receipt, collect if necessary when calling long distance. Thank you.

From: Edwards, Debbie Sent: 9-Nov-18 09:08

To: Sabo, Ron <Ron.Sabo@hamilton.ca>

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High
Sensitivity: Confidential

The contents of this email transmission are privileged and confidential, intended ONLY for the recipients named above and subject to lawyer and client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this email and are not the intended recipient, please destroy it and call 905-546-2424, ext. 2628, collect if long distance. Thank you.

Ron, Gord McGuire has received this FOI request and is very anxious about it. He would appreciate some advice so I am hoping that you and I can discuss, perhaps on Monday? His deadline is the 15<sup>th</sup> and he is scheduled to be out of the country from the 15<sup>th</sup> to the 26<sup>th</sup>. Thanks Ron. Debbie



City of Hamilton Legal and Risk Management Services Division City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

#### Deborah A. Edwards

Deputy City Solicitor, Commercial, Development and Policy Legal and Risk Management Services Division, Corporate Services City of Hamilton

Phone: 905.546.2424 ext. 2628

Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about **friction testing** on the Red Hill Valley Parkway in the **last five years** AND any reports, memos (including drafts), or correspondence about **asphalt and/or pavement testing, assessments, plans** on the Red Hill Valley Parkway in the last **two years** 

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

To: Moore, Gary < Gary.Moore@hamilton.ca > Cc: McGuire, Gord < Gord.McGuire@hamilton.ca >

Subject: FW: FOI #18-189

Importance: High
Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron

Administrative Assistant II Engineering Services Division City of Hamilton, Public Works 905-546-2424, Ext.4867

From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189 Importance: High Sensitivity: Confidential

Hi Diana,

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

## Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy Cc: Rashford, Debbie-Ann Subject: FOI #18-189 Importance: High Sensitivity: Confidential

### Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15, 2018**?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson
Access & Privacy Officer
Corporate Services
City of Hamilton
71 Main Street West, 1st Floor
HAMILTON ON L8P 4Y5
Phone (905) 546-2424 ext. 4632

## MacNeil, Byrdena

From:

MacNeil, Byrdena

Sent:

November 9, 2018 3:04 PM

To:

McGuire, Gord

Subject:

FW: FOI #18-189 - RHVP Friction testing request

Attachments:

18-189 Info Sheet.docx

Importance:

High

Sensitivity:

Confidential

### SOLICITOR-CLIENT PRIVILEGED

Hi Gord.

Ron Sabo has asked me to assist you with the matter below. Do you have time to chat on Monday, November 12th? I am free any time after 10:30 a.m.

Thanks, Byrdena

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about friction testing on the Red Hill Valley Parkway in the last five years AND any reports, memos (including drafts), or correspondence about asphalt and/or pavement testing, assessments, plans on the Red Hill Valley Parkway in the last two years

Regards Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

To: Moore, Gary < Gary.Moore@hamilton.ca > Cc: McGuire, Gord < Gord.McGuire@hamilton.ca >

Subject: FW: FOI #18-189

Importance: High
Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron Administrative Assistant II Engineering Services Division City of Hamilton, Public Works 905-546-2424, Ext.4867

From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189

Importance: High Sensitivity: Confidential

Hi Diana,

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon

General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy Cc: Rashford, Debbie-Ann Subject: FOI #18-189 Importance: High Sensitivity: Confidential

Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15, 2018**?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson
Access & Privacy Officer
Corporate Services
City of Hamilton
71 Main Street West, 1st Floor
HAMILTON ON L8P 4Y5
Phone (905) 546-2424 ext. 4632

# File #18-189

# Request for Access to Municipal Records Information Sheet

Access and Privacy Officer: Anne Watson Telephone: (905) 546-2424 ext. 4632 Fax: (905) 546-2095

E-mail: anne.watson@hamilton.ca

The City is in receipt of a request to access municipal records pursuant to the provisions of the *Municipal Freedom of Information and Protection of Privacy Act* (the *Act*).

Please review the request details below and complete the necessary searches for responsive records. Your department has seven (7) calendar days in which to complete its record searches and provide a response to our office.

If it appears that the **record searches** will <u>exceed three (3) hours</u>, you may wish to consider conducting a representative search of a smaller amount of records; providing our Office with a search time estimate detailed on page 2 of the Information Sheet. Based on your department's response our office will determine whether or not to issue a fee estimate to the requester before proceeding further with the request.

Your department response, including the completed Information Sheet and a HARD COPY of the responsive records, <u>SINGLE-SIDED AND UN-STAPLED</u> is due at our Office (CITY HALL, 1<sup>ST</sup> FLR) by Thursday, November 15, 2018.

Please contact **Anne Watson** if you have questions concerning the request or require assistance to complete page 2 of this form.

Access to any reports, memos, drafts, correspondence about **friction testing** on the Red Hill Valley Parkway in the **last five years** AND any reports, memos (including drafts), or correspondence about **asphalt and/or pavement testing**, **assessments**, **plans** on the Red Hill Valley Parkway in the last **two years** 

# File #18-189<sup>2</sup>

|    | me: Division/Section:                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ph | one:                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. | Does your Department/division/section have records responsive to this request? A record is defined as any record of information however recorded, whether in printed form, on film, by electronic means or otherwise. (e.g. reports, correspondence, memos, Inspector notebooks, books, plans, maps, drawings, diagrams, pictorial or graphic works, photographs, film, microfilm, sound recordings, e-mails)  Yes  No |
| 2. | Are any of the records that are responsive to this request, <u>available to the Public directly</u> through your Department? If yes, please identify the record(s), any applicable department fees, and a contact person and telephone number (DO NOT PROVIDE a copy of the records if the records are available directly through your office).                                                                        |
|    | □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | ,                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. | If your Department has records responsive to the request that are <b>not</b> routinely available through your Department, please provide information describing the following:                                                                                                                                                                                                                                         |
|    | <ul> <li>The type of records;</li> <li>Physical location of records and how the records are stored or maintained;</li> <li>Approximate volume of responsive records;</li> <li>The activities involved in identifying the responsive records</li> <li>List any concerns about disclosure of the records(s)</li> </ul>                                                                                                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. | Under the <i>Act</i> the City can apply fees for <b>record searching</b> , <b>record preparation</b> , <b>and photocopying ONLY</b> . However, for internal purposes the FOI Office does track the amount of time spent by City staff on each FOI request. Please indicate the amount of time spent completing <b>EACH</b> of the following activities ( <b>if applicable</b> ):                                       |
|    | <ul> <li>Searching for responsive records</li> <li>Searching &amp; Printing microfiche records</li> </ul>                                                                                                                                                                                                                                                                                                              |
|    | Searching & Printing AMANDA/HANSEN records                                                                                                                                                                                                                                                                                                                                                                             |
|    | <ul><li>Pulling records</li><li>Reviewing records</li></ul>                                                                                                                                                                                                                                                                                                                                                            |
|    | <ul> <li>Copying records</li> <li>Assembling/scanning/delivering/faxing records</li> </ul>                                                                                                                                                                                                                                                                                                                             |
| 5. | Are you aware of any other <b>City Department</b> (e.g. Public Works, Corporate Services, Healthy & Safe Communities) that may have responsive record(s)? If yes, please identify the Department and provide staff contact information if known.                                                                                                                                                                       |
|    | □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | (If you are aware of <b>another</b> division or section <u>within</u> your <b>City Department</b> that may have responsive records, please ensure that the request details are appropriately disseminated and the response(s) included in your <b>Department's complete response</b> .)                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                        |

# MacNeil, Byrdena

From:

MacNeil, Byrdena

Sent:

November 9, 2018 3:02 PM

To:

Sabo, Ron

Subject:

RE: FOI #18-189 - RHVP Friction testing request

Sensitivity:

Confidential

Received. Will do.

### Byrdena M. MacNeil, Solicitor

City of Hamilton - Legal Services Division

t: 905.546.2424, ext. 4637

f: 905.546.4370

e: byrdena.macneil@hamilton.ca

Courier Address: 50 Main Street East, 5th Floor, Hamilton, Ontario L8N 1E9 Mailing Address: City Hall, 71 Main Street West, Hamilton, Ontario L8P 4Y5

The contents of this e-mail transmission are privileged and confidential, intended only for the recipients named above and are subject to solicitor and client privilege. This message may not be copied, reproduced, retransmitted or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the intended recipient, please destroy it and call 905.546.2424, ext. 4637, collect if long distance. Thank you.

From: Sabo, Ron

Sent: November-09-18 2:42 PM

To: MacNeil, Byrdena

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

As discussed, touch base with Gord, thanks



City of Hamilton Legal and Risk Management Services City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### R. A. Sabo

Deputy City Solicitor, Dispute Resolution Legal and Risk Management Services, Corporate Services City of Hamilton Phone: 905.546.2424 ext. 3143

Fax: 905.546.4370

Physical Office: 50 Main St. East, 4th Floor, Hamilton, ON

The contents of this message are privileged and confidential, intended only for recipients named by this sender above, and subject to solicitor-client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this e-mail and are not the included or intended recipient, please delete it and call 905 546 4520 to advise of an error in sending or receipt, collect if necessary when calling long distance. Thank you.

From: Edwards, Debbie Sent: 9-Nov-18 09:08

To: Sabo, Ron <Ron.Sabo@hamilton.ca>

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High
Sensitivity: Confidential

The contents of this email transmission are privileged and confidential, intended ONLY for the recipients named above and subject to lawyer and client privilege. This message may not be copied, reproduced or used in any manner without the express written permission of the sender. If you have received this email and are not the intended recipient, please destroy it and call 905-546-2424, ext. 2628, collect if long distance. Thank you.

Ron, Gord McGuire has received this FOI request and is very anxious about it. He would appreciate some advice so I am hoping that you and I can discuss, perhaps on Monday? His deadline is the 15<sup>th</sup> and he is scheduled to be out of the country from the 15<sup>th</sup> to the 26<sup>th</sup>. Thanks Ron. Debbie



City of Hamilton Legal and Risk Management Services Division City Hall 71 Main Street West Hamilton, ON Canada L8P 4Y5 www.hamilton.ca

### Deborah A. Edwards

Deputy City Solicitor, Commercial, Development and Policy Legal and Risk Management Services Division, Corporate Services City of Hamilton

Phone: 905.546.2424 ext. 2628

Fax: 905.546.4370

Physical Office: 50 Main St. East, 5th Floor, Hamilton, ON

From: McGuire, Gord

**Sent:** November-08-18 11:04 AM **To:** Edwards, Debbie; Graham, Jasmine

Subject: FW: FOI #18-189 - RHVP Friction testing request

Importance: High Sensitivity: Confidential

Hi Ladies:

See the attached for testing results on the RHVP. I have the last 2 years data. Can we discuss this today if possible.

Access to any reports, memos, drafts, correspondence about **friction testing** on the Red Hill Valley Parkway in the **last five years** AND any reports, memos (including drafts), or correspondence about **asphalt and/or pavement testing, assessments, plans** on the Red Hill Valley Parkway in the last **two years** 

Regards

Gord McGuire O.L.S., B.Sc. Director of Engineering Services Public Works 905-546-2424 x2439

From: Cameron, Diana

Sent: November 8, 2018 10:39 AM

**To:** Moore, Gary <<u>Gary.Moore@hamilton.ca</u>> **Cc:** McGuire, Gord <<u>Gord.McGuire@hamilton.ca</u>>

Subject: FW: FOI #18-189

Importance: High
Sensitivity: Confidential

Would you be able to point me in the right direction?

Please and thank you.

Diana Cameron

Administrative Assistant II

Engineering Services Division
City of Hamilton, Public Works
905-546-2424, Ext.4867

From: Wunderlich, Nancy Sent: November-08-18 9:08 AM

To: Cameron, Diana

Cc: Watson, Anne; Rashford, Debbie-Ann

Subject: FW: FOI #18-189 Importance: High Sensitivity: Confidential

Hi Diana.

Please refer to the attached inquiry for investigation and response. Please copy me on the feedback to Clerk's by the deadline noted.

Thanks,

Nancy Wunderlich, Administrative Coordinator to Dan McKinnon General Manager, Public Works Department, City of Hamilton 320 - 77 James Street North Hamilton ON L8R 2K3 905.546.3641 (Telephone) | 905.546.4481 (Facsimile) Nancy Wunderlich@hamilton.ca

From: Watson, Anne

Sent: November-08-18 9:03 AM

To: Wunderlich, Nancy

Cc: Rashford, Debbie-Ann Subject: FOI #18-189 Importance: High Sensitivity: Confidential

Hello Nancy

Our office is in receipt of an application to access records pursuant to the provisions of MFIPPA; the details of the request are contained in the attached Information Sheet.

Nancy, please review the request details and forward to the appropriate dept. contact(s), confirming same with our office. Also Nancy, would you pls. ensure that page 2 of the Information Sheet is completed and returned to our office with the department's complete response by the due date **November 15, 2018**?

Many thx Nancy and pls. contact me if you or staff have any questions.

Anne Watson
Access & Privacy Officer
Corporate Services
City of Hamilton
71 Main Street West, 1st Floor
HAMILTON ON L8P 4Y5
Phone (905) 546-2424 ext. 4632



April 5, 2019

130 Adelaide St W Suite 2600 Toronto, ON Canada MSH 3PS T 416-865-9500 F 416-865-9010 www.litigate.com

Eli S. Lederman

Direct line: Direct fax: 416-865-3555 416-865-2872

Email:

elederman@litigate.com

### Via Email

The Honourable Chief Justice Heather J. Forster Smith Chief Justice of the Superior Court of Justice 130 Queen Street West Toronto, ON M5H 2N5

Dear Chief Justice Smith:

### RE: Corporation of the City of Hamilton - Request to Appoint a Judicial Inquiry

We are writing to you in our capacity as counsel to the Corporation of the City of Hamilton.

At a meeting held on March 20, 2019, Council of the City of Hamilton passed a resolution requesting a judge of the Superior Court of Justice to investigate matters relating to a failure to disclose to the City Council a draft report prepared by Tradewind Scientific Ltd., dated November 20, 2013 with respect to the friction levels on the Red Hill Valley Parkway in the City of Hamilton.

You will find enclosed a true certified copy of the Motion requesting that a judge be appointed pursuant to section 274 of the *Municipal Act*, 2001, S.O. 2001, c.25 to conduct an investigation.

We would be grateful to be advised when a judge has been appointed pursuant to the terms of the Motion.

Please also copy any future correspondence to Ms. Nicole Auty, City Solicitor for the City of Hamilton. She may be reached at:

The City of Hamilton 71 Main Street West Hamilton, Ontario, L8P 4Y5 Tel: 905-546-2424 ext. 4636

Fax: 905-546-4370

Email: Nicole.Auty@hamilton.ca

We look forward to hearing from you.

Yours very truly,

Eli S. Lederman

EL/DC/mw Enclosure.

c. Nicole Auty, City Solicitor for the City of Hamilton Mike Zegarac, Interim City Manager for the City of Hamilton Delna Contractor, Lenczner Slaght LLP

LSRSG 100970740.1



City of Hamilton 71 Main Street West Hamilton, ON L8P 4Y5 www.hamilton.ca

# 4.2 Judicial Investigation respecting the Lincoln Alexander & Red Hill Valley Parkways

- (a) That the City's outside legal counsel, in consultation with the Acting City Manager, be directed to prepare the necessary documents to file an application before the Superior Court to initiate a Judicial Investigation, pursuant to *Ontario Municipal Act*, 2001, as amended, Section 274.1.a & b, (Investigation by a Judge), and the *Public Inquires Act*, Section 33, (Public Inquiries); and,
- (b) That the scope of the Judicial Investigation could include, but not be limited to, the following questions and be referred to outside legal counsel for review and a report back to the General Issues Committee:
  - (i) Who received, was briefed or was advised on the existence of the November 20<sup>th</sup>, 2013 Tradewind Scientific Friction Testing Survey Summary Report on the Lincoln Alexander & Red Hill Valley Parkways (the document) in 2013 or subsequent years;
  - (ii) Who was the individual or individuals, who decided not to disclose the document in 2013;
  - (iii) What was the rationale for not disclosing the document in 2013;
  - (iv) Who received a copy, was briefed or was informed about the existence of the document in 2018;
  - (v) What was the rationale for not disclosing the document in September 2018;
  - (vi) Did the document provide sufficient cause to make safety changes to the roads, or provide cause for further study;
  - (vii) What role, if any, did the non-disclosure of the document play in the increase in accidents, injuries or fatalities on the roads;
  - (viii) Did anyone in the Public Works Office or Roads Department request, direct or conduct any other friction test, asphalt assessment, or general road safety reviews or assessments on the roads:
  - (ix) Did subsequent consultant reports provide additional support or rebuttal to the document's conclusions;
  - (x) Did the Ministry of Transportation's (MTO) recently revealed friction tests provide additional support or rebuttals to the document's conclusions;

- (xi) What was the rationale for the Ministry of Transportation to not disclose their findings from the city and the public;
- (xii) Who was briefed within the Ministry or the Minister's Office about the findings of the MTO's friction tests;
- (xiii) Did the MTO friction test provide sufficient cause to make safety changes to the roads, or provide cause for further study;
- (xiv) What role, if any, did the non-disclosure of the MTO friction tests play in the increase in accidents, injuries or fatalities on the roads;
- (xv) Did the MTO conduct any other road assessment, friction tests, or general safety reviews or assessments on the roads;
- (xvi) Was there any malfeasance, wrong doing or misconduct by any person or persons in relations to their role in the non-disclosure of the document;
- (xvii) Review and make recommendations to improve City policy and procedures to prevent such future incidents;
- (xviii) What is the standard in Ontario for friction;
- (xix) Are results for friction for highways across the Province available; and
- (xx) Is speed, traffic weaving and lighting as big an issue as the friction tests.

I hereby certify the foregoing to be a true copy of Motion 4.2 of the Minutes of City of Hamilton Council of March 20, 2019.

Dated at the City of Hamilton on this 3rd day of April, 2019.

J. Pilon

This is **Exhibit "D**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

Court File No.: 17-61728

# ONTARIO SUPERIOR COURT OF JUSTICE

BETWEEN:

### SHANNON HANSEN and HEATHER HANSEN

**Plaintiffs** 

- and -

### MARK BERNAT and CITY OF HAMILTON

Defendants

# VOLUME I AFFIDAVIT OF DOCUMENTS

- I, Marco Oddi, of the City of Hamilton, in the Province of Ontario, MAKE OATH AND SAY:
- 1. I am a Manager in the Engineering Services Division of the Public Works Department for the Defendant, City of Hamilton, which is a corporation.
- I have conducted a diligent search of the corporation's records and made appropriate enquiries of others to inform myself in order to make this Affidavit. This Affidavit discloses, to the full extent of my knowledge, information and belief, all documents relevant to any matter in issue in this action that are or have been in the possession, control or power of the corporation.
- 3. I have listed in Schedule A those documents that are in the possession, control or power of the corporation and that it does not object to producing for inspection.
- 4. I have listed in Schedule B those documents that are or were in the possession, control or power of the corporation and that it objects to producing because it claims they are privileged, and I have stated in Schedule B the grounds for each such claim.
- 5. I have listed in Schedule C those documents that were formerly in the possession, control or power of the corporation but are no longer in its

possession, control or power and I have stated in Schedule C when and how it lost possession or control of or power over them and their present location.

6. The corporation has never had in its possession, control or power any documents relevant to any matter in issue in this action other than those listed in Schedules A, B, and C.

SWORN BEFORE ME at the City of Hamilton, in the Province of Ontario, this 3,0 day of 700, 2018

MARCO ODDI

A Commissioner, etc.

### LAWYER'S CERTIFICATE

I CERTIFY that I have explained to the deponent,

- the necessity of making full disclosure of all documents relevant to any matter in issue in the action; and,
- (b) what kinds of documents are likely to be relevant to the allegations made in the pleadings.

Dated: 1904 3/18

DANA-ELISABETA LEZAU

# SCHEDULE "A"

Documents in the corporation's possession, control or power that it does not object to producing for inspection.

# **PLEADINGS**

All pleadings and proceedings relating to Court File No. 17-61728.

# CORRESPONDENCE

| <u>No.</u> | <u>Date</u>       | Document       | Sender                                | Recipient                           | No. of Pages |
|------------|-------------------|----------------|---------------------------------------|-------------------------------------|--------------|
| 1.         | December 18, 2015 | Notice Letter  | Nolan Glenn,<br>Nolan<br>Paralegals   | City of<br>Hamilton                 | 2            |
| 2.         | December 23, 2015 | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 3            |
| 3.         | February 25, 2016 | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 1            |
| 4.         | April 8, 2016     | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 1            |

# INVESTIGATION

| No. | <u>Date</u>                          | Document                                                   | Sender/Creator                    | Recipient | No. of      |
|-----|--------------------------------------|------------------------------------------------------------|-----------------------------------|-----------|-------------|
| 5.  | October 1, 2013 –<br>October 31 2015 | Hansen Search, Red Hill<br>Valley Parkway                  | Public Works,<br>City of Hamilton |           | Pages<br>90 |
| 6.  | October 2013                         | Red Hill Valley Parkway<br>Safety Review                   | CIMA                              | ,         | 114         |
| 7.  | October 24, 2015                     | Amec Weather Forecast  – Hamilton North Zone               | Public Works,<br>City of Hamilton |           | 4           |
| 8.  | October 24, 2015                     | Daily and Monthly<br>Environment Canada<br>Weather Records | Environment<br>Canada             |           | 5           |
| 9.  | October 24, 2015                     | Hamilton Police Service                                    | Hamilton Police                   |           | 28          |

|     |                    | T                                                                                                    |                                   |                           |    |
|-----|--------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|----|
|     |                    | Records including Motor<br>Vehicle Accident Report<br>#15-739738, duty notes<br>and 911 call on disc | Service                           |                           |    |
| 10. | October 24, 2015   | Hansen Printout re MVA<br># 15-739738                                                                | Public Works,<br>City of Hamilton |                           | 1  |
| 11. | November 2015      | Red Hill Valley Parkway<br>Detailed Safety Analysis                                                  | CIMA                              |                           | 88 |
| 12. | April 4, 2016      | Hamilton Strategic Road<br>Safety Program Update                                                     | Public Works,<br>City of Hamilton | Public Works<br>Committee | 18 |
| 13. | May 11, 2016       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 3  |
| 14. | May 20, 2016       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 4  |
| 15. | September 19, 2016 | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 2  |
| 16. | October 3, 2016    | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 4  |
| 17. | January 16, 2017   | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 1  |
| 18. | March 24, 2017     | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 3  |
| 19. | April 13, 2017     | Report - Five Year<br>Statistical Analysis of<br>Fatal Collisions in<br>Hamilton                     | Hamilton Police<br>Services Board | <i>y</i>                  | 23 |
| 20. | May 19, 2017       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 5  |
| 21. | April 20, 2018     | 26 Colour Photographs of accident location                                                           | Cunningham<br>Lindsey             |                           | 26 |



| OFFICE OF T | HE CITY CLER |
|-------------|--------------|
| DEC 1       | 8 2015       |
| REFOTO      | Molegnas     |
| REFO TO     |              |
|             | ,            |
| ACTION      |              |
|             | * ,          |
|             | •            |











|                     | ://siriusapp/han8p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orod/                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D - G                         | Lookup Ser                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|
| ile Edit View Favo  | rītes Tools He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lp                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Service for the service of the servi |                               |                                 |
| infor Public        | : Sector v8.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                  | and the section of th | ing and the second seco |                               |                                 |
| Asset Management 🔻  | Inventory 🕶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Work Manageme                                      | nt 🔻 Custon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ner Service 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Resources                     | → System                        |
| My Infor Lool       | kup Service R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equests (CSLSR                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The livelies so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of the state of | andro de la seguira de 19<br>19 |
| X                   | Q Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | Show ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                             |                                 |
|                     | Control of |                                                    | The second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ere in the set of             | Contract Managers and its same  |
| Search Criteria Re  | sults (87 records)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Map                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Service Request#    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Priorii                                            | v [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Īo Inspec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tor [                         | . 👼                             |
| Request Type        | TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsibilit                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resoluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                 |
| Area                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ma <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p# (                          |                                 |
| Sub-area            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n code for the sub-area<br>vice request is located | , such as a distric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ву 🗀                          |                                 |
| Reference #         | 一些等語                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | within a county.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caller Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | irst                          |                                 |
| Numbe               | er Pre Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Name                                        | Suf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fix Post Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r Subdesigna                  | ation                           |
| Ad(                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RED HILL VALLEY                                    | ≣ą (PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y 👼 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                 |
| Cross Str           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | *                               |
| City                | , Province, Postal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Code HAMILTON                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Asset               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 🔻                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Parcel ID           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b></b>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Property ID         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - EQ                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Request Status      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 霞                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Assigned (          | Both ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                 |
| Scheduled (         | Both .▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From //                                            | : 首  To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Ċ.                              |
| Started             | Both ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From [//                                           | : <u> </u>   To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Ċ                               |
| Completed           | Both ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From [ / /                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Ċ                               |
|                     | Both ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From [//                                           | : 当 To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Ċ.                              |
| Resolved            | Both 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . From / /                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 台                               |
| Inspection Due By   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [                             |                                 |
| Inspection Due By ( | Both  Both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | From / / / From 01/10/2013                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31/10/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | ch □sı<br>ch                    |



| eave default rull for all Addresses or Enter an address (Street # and Street Name)  red hill valley  Inter a Request Type (leave as * for any Request Type or use * for wildcard searches):  Selected Values:  TRACC  Selected Values:  TRACC  Remove Remove All  Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Price Request Resolved (Y, N, N/A):  N/A - Both Inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  Remove Remove All  Remove Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | National Action in the Control of th | 14 (APRILY 12 APRIL 1983) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Inter a Request Type (leave as * for any Request Type or use * for wildcard searches):  Selected Values:  TRACC  Remove Remove All  Inter Request Date:  Start of Range:  End of Range:  Enter a Value:  10/1/2015 20:50:50:9  Include this value No lower value  Include this value No upper value  Prvice Request Resolved (Y, N, N/A):  N/A - Both  Ther a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eave default null for all Addresses or Enter an address (Street # ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Street Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng ray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| Inter a Request Type (leave as * for any Request Type or use * for wildcard searches):  Selected Values:  TRACC  Remove Remove All  Inter Request Date:  Start of Range:  End of Range:  Enter a Value:  10/1/2015 20:50:50:9  Include this value No lower value  Include this value No upper value  Prvice Request Resolved (Y, N, N/A):  N/A - Both  Ther a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Selected Values:    TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | red nill valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s | .*s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                         |
| Selected Values:    TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Selected Values:    TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nter a Request Type (leave as * for any Request Type or use * for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r wildcard searches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tr. Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.110000                  |
| TRACC  TRACC  Remove Remove All  Remove All  Remove All  Remove All  Remove Remove All  End of Range: Enter a Value: [10/31/2015 23:59:59  Include this value No lower value  Include this value No upper value  Remove Remove All  Indude this value:  Indide this value No upper value  Remove Remove All  Indide this value:  Indide this value:  No upper value  Remove Remove All  Indide this value:  Indide this value No upper value  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the a reducer the fearers to any reducer the state its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>i maigain da an</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Remove Remove All    Remove   Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | And the second s | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 .                       |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Include this value No upper value  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at" <sub>g</sub> ja       |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Include this value No upper value  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Inter a Value:  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Individe this value No upper value  Individual this value No upper value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46<br>2                   |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Include this value No upper value  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Inter a Value:  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Include this value No upper value  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Inter a Value:  Include this value No upper value  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Inter Request Date:  Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value No lower value  Include this value No upper value  Include this value No upper value  Include this value No upper value  Include this value Service Request Resolved (Y, N, N/A):  Include this value Service Request Resolved (Y, N, N/A):  Inter a Value:  Include this value No upper value  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Demove Demo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ove All.                  |
| Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value  No lower value  Privice Request Resolved (Y, N, N/A):  N/A - Both Inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICHIOVE   ICENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70C AII                   |
| Start of Range: Enter a Value:  10/1/2013 00:00:00  Include this value  No lower value  Price Request Resolved (Y, N, N/A):  N/A - Both Inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Enter a Value:    10/1/2013 00:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nter Request Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Enter a Value:    10/1/2013 00:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chart of Danger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | End of Dances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 10/31/2013 00:00:00   Indude this value   No lower value   No upper value   No upper value   Indude this valu | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 4 ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 67                      |
| Include this value No lower value  Include this value No upper value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Walana and a same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| ervice Request Resolved (Y, N, N/A):  [N/A - Both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| N/A - Both inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *    *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☑ Include this value ☐ No lower value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indude this value ☐ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | upper value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| N/A - Both inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *    *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - And the same of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| N/A - Both inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *    *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *    *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ervice Request Resolved (Y, N, N/A):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                         |
| inter a Value:  N/A  Inter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A - Roffs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| nter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| nter a Responsibility Code (leave as * for any Responsibility Code or use * for wildcard searches):  Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Land and the Manager of the Control |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Selected Values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nter a Responsibility Code (leave as * for any Responsibility Code o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or use * for wildcard searches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 %                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Remove All Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SP.                       |
| Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Remove   Remove All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Demove Demo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve All                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kenove   Keno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VC FILL                   |

**From:** Filice, Antonio **Sent:** September-19-17 12:01 PM

To: Fraser, Kurt

Subject: Multiple Hansen search request ( RMS # 047021 )



Due By

Due By

Due By

Due By

3400031

SR# 3400031

Request Type TRACC - Roads - Accidents/Claims

Request Date 05/10/2013 10:39

Taken By 118788-0

Incident Date 05/10/2013 10:39

Priority -

Responsibility TRAD - ROADS AFTER HOURS DAYS

**Project** 

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location

Additional Information

Inspection

Inspector 013956-0

Scheduled 05/10/2013 10:39

Started

Completed

Resolved 17/03/2017 11:53

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name Address

Call Date: 05/10/2013 10:39 am

Taken By: 118788-0

**Customer Comments** 

MVA fluid cleanup, event#721785

Logs

Log Type and Description

TWCS - STAFF COMMENTS

Start Date Time

Started By

Comments

Day Phone

**EMAIL** 

3/17/2017 11:53:37AM

AGENCY06

Assumed complete - cspiak

Area WARD4

Sub-area

**District** 

Source

Last Modified By cspiak

Reviewed By **Reviewed Date** 

Last Modified Date Time 17/03/2017 11:53:37

Eve/Cell Phone

Severity

**Map #** Reference #

Printed Date Time:

Report Location

19/09/2017 13:37:43 Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 1 of 87



3410635

SR# 3410635

Request Type TRACC - Roads - Accidents/Claims

Request Date 13/10/2013 18:04

Taken By 115417-0

Incident Date 13/10/2013 18:04

Priority

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

**Location** NORTH BOUND

Additional Information CALL SPILL

Inspection

Inspector 013956-0

Scheduled 13/10/2013 18:04

Due By

Started

Due By

Completed

Due By

Resolved 14/10/2013 22:22

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 13/10/2013 06:04 pm

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

**District** 

Source

Reviewed By Reviewed Date

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 14/10/2013 22:22:48

Map # Reference #

HAMILTON POLICE

Taken By: 115417-0

Customer Comments

fluid clean up from mvc - incident #728 364

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 2 of 87



3417479

SR# 3417479

Request Type TRACC - Roads - Accidents/Claims

Request Date 17/10/2013 21:03

Taken By 112920-0

Incident Date 17/10/2013 21:03

**Priority** 

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Address RED HILL VALLEY PKY HAMILTON

Location

Additional Information CALL IN SPILL

Inspection

Inspector 013956-0

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 17/10/2013 21:27

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 17/10/2013 21:27:54

POLICE

Call Date: 17/10/2013 09:03 pm

Taken By: 112920-0

Customer Comments

N/B near King St exit. Fluid and guard rail damage. Inc #P13-731475

Logs

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 3 of 87



3419846

SR # 3419846

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 19/10/2013 13:29

Map#

Taken By 117839-0

Reference # Source

Incident Date 19/10/2013 13:29

Priority

Last Modified By RSPAGNUOLO

Last Modified Date Time 19/10/2013 17:24:45

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Project

Address RED HILL VALLEY PKY HAMILTON

Reviewed Date

Location SOUTHBOUND LANES UNDER THE KING STREET OVERPASS

Additional Information Quantum has been called and clean-up has taken place on Ocotber 19 / 2013. Paper work done by B.

Boudreau.

Inspection

Inspector 083540-0

Severity

Due By

Started

Due By

Completed

Due By

Due By

Resolved 19/10/2013 17:24

Scheduled 19/10/2013 13:29

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

HAMILTON POLICE

Call Date: 19/10/2013 01:29 pm

Taken By: 117839-0

**Customer Comments** 

Incident #P13-732699 - fluid clean up from mvc

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 4 of 87



3430164

SR # 3430164

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 25/10/2013 17:01

Map #

Reference #

Taken By 112920-0

Incident Date 25/10/2013 18:06

Source

Last Modified By RSPAGNUOLO

Priority

Last Modified Date Time 26/10/2013 8:06:18

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

Reviewed Date

Location

Additional Information Quantum has been called and clean-up has taken place on October 25 / 2013. Paper work done by J.

Inspection

Inspector 083540-0

Severity

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 26/10/2013 08:06

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name POLICE Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 25/10/2013 05:01 pm

Taken By: 112920-0

fluid - S/B between Barton and Queenston...Inc #P13-737176

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 5 of 87



3430754

SR# 3430754

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 27/10/2013 12:45

Map #

Reference #

Taken By 107516-1

Source

Incident Date 27/10/2013 12:45

Priority EMRG - Emergency

Last Modified By RSPAGNUOLO

Last Modified Date Time 28/10/2013 15:53:06

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

**Reviewed Date** 

Location

Additional Information referred to Sam Capostagno due to shift change and paper work done by Dave Thomas on October 27 /

Inspection

Inspector 083540-0

Severity

Scheduled 27/10/2013 12:49

Due By

Started

Due By

Completed

Due By

Due By

Resolved 28/10/2013 15:52

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name HAMILTON POLICE Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Call Date: 27/10/2013 12:45 pm

Taken By: 107516-1

Customer Comments

MVA - oil clean up on ramp from barton going onto south bound lanes - INCEIDENT P 13 738 566

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 6 of 87



3438350

SR # 3438350

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 01/11/2013 08:30

Мар#

Reference #

Taken By 119206-0

Source

Incident Date 31/10/2013 21:52

Last Modified By KMARK

**Reviewed Date** 

**Priority** 

Last Modified Date Time 27/11/2013 11:17:30

Responsibility TRND - ROADS NORTH

Reviewed By

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location -GUARD RAIL NEEDS TO BE LOOKED AT-

NORTH BOUND, JUST SOUTH OF KING STREET EXIT, MEDIAN SIDE/LEFT HAND SIDE

Additional Information hold for business hours

Inspection

Inspector

Severity

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 27/11/2013 11:17

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE DISPATCH

**EMAIL** 

Call Date: 31/10/2013 09:52 pm

Taken By: 119206-0

Customer Comments

Hamilton Police called in regards to an accident - car spun out and hit guard rail on redhill valley -north bound- just south of king on the left hand median side. HAMILTON POLICE SAID ITS NOT URGENT - but guard rail will need to be inspectedincident #741969

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 7 of 87



3440599

SR # 3440599

Request Type TRACC - Roads - Accidents/Claims

Request Date 02/11/2013 17:50

Taken By 120049-0

Incident Date 02/11/2013 17:50

**Priority** 

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location SOUTH BOUND

Additional Information P13-743 466fluid clean up mva / CALL IN SPILL

Inspection

Inspector 013956-0

Scheduled 02/11/2013 17:50

Due By

Started

Due By

Completed

Due By

Resolved 02/11/2013 21:52

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 02/11/2013 21:52:10

Map # Reference #

HAMILTON POLICE

<u>Call Date:</u> 02/11/2013 05:50 pm

Taken By: 120049-0

Customer Comments

Logs



3443252

SR # 3443252

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 04/11/2013 17:46

Map #

Reference #

Taken By 117839-0

Source

Incident Date 04/11/2013 17:46

Last Modified By RSPAGNUOLO

**Priority** 

Last Modified Date Time 04/11/2013 20:29:37

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By Reviewed Date

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location EXIT TO MUD ON THE RAMP

Additional Information Quantum has been called and clean-up has taken place on November 04 / 2013, Paper work done by

Dave Thomas

Inspection

Inspector 083540-0

Severity

Scheduled 04/11/2013 17:46

Due By

Started

Due By

Completed

Due By

Resolved 04/11/2013 20:29

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON FIRE

Call Date: 04/11/2013 05:46 pm

**EMAIL** 

Taken By: 117839-0

**Customer Comments** 

Incident F13-032866 - mvc - request absorbent clean up

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 9 of 87



3466176

SR# 3466176

Request Type TRACC - Roads - Accidents/Claims

Request Date 20/11/2013 16:56

Taken By 107516-1

Incident Date 20/11/2013 16:56

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Address RED HILL VALLEY PKY HAMILTON

**Location** SB AT BARTON STREET EXIT

Additional Information Boulders has been removed on November 20 / 2013 by Dave Thomas

Inspection

Inspector 083540-0

Scheduled 20/11/2013 16:56

Due By

Started

Due By

Completed

Due By

Resolved 20/11/2013 17:46

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By RSPAGNUOLO

Severity

Last Modified Date Time 20/11/2013 17:46:31

Мар# Reference #

**EMAIL** 

Call Date: 20/11/2013 04:56 pm

Taken By: 107516-1

Customer Comments

boulders on road - Incident # P 13 756 613

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 10 of 87



3468635

SR # 3468635

Request Type TRACC - Roads - Accidents/Claims

Request Date 22/11/2013 11:32

Taken By 000846-0

Incident Date 22/11/2013 11:32

**Priority** 

Responsibility TRED - ROADS EAST

Project

Address RED HILL VALLEY PKY HAMILTON

Location @ MUD ST EXIT - TRAVELLING SOUTH BOUND

Additional Information Fwded to Supervisor T. Pilszak - dispatched Acting Investigator D. Crevatin who will assess site. District

Due By

Due By

Due By

Due By

North responded to site as per J. Manning.

Inspection

Inspector

Scheduled

Started

Completed

Danahard 22/2

Resolved 22/11/2013 11:32

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Address

Name

CONTACT CENTRE FOR HAMILTON POLICE

ICE

Day Phone

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Last Modified By PEYRE

Reviewed By Reviewed Date

Last Modified Date Time 22/11/2013 12:57:35

Severity

<u>Map #</u> Reference #

**EMAIL** 

Call Date: 22/11/2013 11:32 am

Taken By: 000846-0

**Customer Comments** 

Contact Centre reports for Hamilton Police rock and gravel debris at this location. Incident P13-757-861, Badge #74.

Please inspect re: removal.

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 11 of 87



3479813

SR # 3479813

Request Type TRACC - Roads - Accidents/Claims

Request Date 02/12/2013 07:41

Taken By 113451-0

Incident Date 02/12/2013 07:41

Priority

Responsibility TRND - ROADS NORTH

Project

Address RED HILL VALLEY PKY HAMILTON

Location N/B ON EXIT RAMP TO GREENHILL

Additional Information OCT 23/14 - CLOSED; WOULD HAVE BEEN COMPLETED SAME DAY AS REPORTED

Inspection

Inspector 105099-0

<u>Scheduled</u> <u>Due By</u>

Started Due By

<u>Completed</u> <u>Due By</u>

<u>Resolved</u> 23/10/2014 11:41 <u>Due By</u>

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

**District** 

Source

Reviewed By Reviewed Date

Last Modified By KMARK

Last Modified Date Time 23/10/2014 11:41:22

Map # Reference #

HAMILTON POLICE

Call Date: 02/12/2013 07:41 am

Taken By: 113451-0

Customer Comments

Fluid cleanup from MVC. Inc# P13-764799

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 12 of 87

1



3500308

SR# 3500308

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 17/12/2013 00:39

Мар# Reference #

Taken By 115418-0

Source

Incident Date 17/12/2013 00:39

Last Modified By JDURANT

Priority

Last Modified Date Time 05/01/2014 13:51:17

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location REDHILL NORTHBOUND JUST NORTH OF GREENHILL, MIDDLE MEDIAN

Additional Information WAS RELAYED TO M. MCENTEE FOR INVESTIGATION, HAS BEEN RESOLVED.

Inspection

Inspector 023545-0

Severity

Scheduled 17/12/2013 00:39

Due By

Started

Due By

Completed

Due By

Resolved 05/01/2014 13:51

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

POLICE

(905)546-4925 x

**EMAIL** 

Call Date: 17/12/2013 12:39 am

Taken By: 115418-0

Customer Comments

Police report median has been struck and damaged after an MVAPolice Incedent #P13-775427

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 13 of 87



3515876

SR# 3515876

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 29/12/2013 03:03

Map # Reference #

Taken By 118787-0

Source

Incident Date 29/12/2013 03:03

Last Modified By MMCENTEE

**Priority** 

Last Modified Date Time 29/12/2013 22:36:26

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location POLICE MVA INCIDENT 784124 FLUID AND A LITTLE DEBRIS NORTH BOUND FROM STONE

CHURCH EXIT.

Additional Information Police cancelled call before we got up there.

Inspection

Inspector 056380-0

Scheduled 29/12/2013 03:07

Severity

Started

Due By Due By

Completed

Due By

Due By

Resolved 29/12/2013 22:36

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name POLICE Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 29/12/2013 03:03 am

Taken By: 118787-0

MVA INCIDENT 784124 FLUID AND DEBRIS NORTH BOUND FROM STONE CHURCH EXIT.

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 14 of 87



3524090

SR# 3524090

Request Type TRACC - Roads - Accidents/Claims

Request Date 03/01/2014 19:07

Taken By 120322-0

Incident Date 03/01/2014 19:07

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location UNDERNEATH THE KING STREET OVERPASS - SOUTH BOUND LANE

Due By

Due By

Due By

Additional Information CALL IN SPILL

Inspection

Inspector 013956-0

Scheduled 03/01/2014 19:10

Started

Completed Due By

Resolved 03/01/2014 22:42

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name POLICE

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

**District** 

Source

Reviewed By **Reviewed Date** 

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 03/01/2014 22:42:38

**Map #** Reference #

Call Date: 03/01/2014 07:07 pm

Taken By: 120322-0

Customer Comments

Fluid Cleanup and sander required - very slipperyaccident called in by the policeIncident #501518Police called back

in and indicated that the guard rail is damaged

Printed Date Time:

Report Location

19/09/2017 13:37:43 Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 15 of 87



3551774

SR # 3551774

Request:Type TRACC - Roads - Accidents/Claims

Request Date 18/01/2014 13:05

Taken By 120049-0

Incident Date 18/01/2014 13:05

**Priority** 

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project

Address RED HILL VALLEY PKY HAMILTON

Location NORTH BOUND, NORTH OF STONE CHURCH CUT OFF

Additional Information incident number- 521 949.......Pictures has been taken and send to Paul McShane for a permanente

Due By

Due By

Due By

Due By

fix on January 19 / 2014.

Inspection

Inspector 083540-0

Scheduled 18/01/2014 13:05

onodurou ....

Started

Completed

Resolved 20/01/2014 15:37

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller Name Customer Ref No

HAMILTON POLICE

Address

Day Phone

Eve/Cell Phone

Area WARD4-5

. Sub-area

**District** 

Source

Reviewed By Reviewed Date

Last Modified By RSPAGNUOLO

Severity

Last Modified Date Time 20/01/2014 15:37:56

<u>Map #</u> Reference #

**EMAIL** 

Call Date: 18/01/2014 01:05 pm

Taken By: 120049-0

Customer Comments

mva fluid clean up as well as a damaged guard rail. North bound, north of stone church road

Logs



3560478

SR # 3560478

Request Type TRACC - Roads - Accidents/Claims

Request Date 23/01/2014 14:22

Taken By 113451-0

Incident Date 23/01/2014 14:22

Priority -

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Address RED HILL VALLEY PKY HAMILTON

Location N/B, NORTH OF GREENHILL

Additional Information

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Last Modified By cspiak

Last Modified Date Time 17/03/2017 12:03:26

Severity

Reviewed By

**Reviewed Date** 

Inspection

Inspector 105099-0

Due By

Scheduled

Started

Due By

Completed

Due By

Resolved 17/03/2017 12:03

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

HAMILTON POLICE

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 23/01/2014 02:22 pm

Taken By: 113451-0

Customer Comments

Fluid cleanup from MVC. Inc# P14-516248

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 12:03:26PM ·

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 17 of 87

1



3569063

SR# 3569063

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

Request Date 28/01/2014 17:52

District Мар#

Reference #

Taken By 120318-0

Source

Incident Date 28/01/2014 17:52

Reviewed Date

Priority EMRG - Emergency

Last Modified By RSPAGNUOLO Last Modified Date Time 01/02/2014 8:23:00

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Project

Address RED HILL VALLEY PKY HAMILTON

Location NORTHBOUND - HALFWAY BETWEEN MUD AND GREENHILL

Additional Information Police PO#14-520125...Quantum has been called and clean-up has taken place on January 28 / 2014.

Paper work done by Dave Thomas.

Inspection

Inspector 083540-0

Severity

Scheduled 28/01/2014 17:51

Due By

Started

Due By

Completed

Due By

Resolved 01/02/2014 08:22

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name FIRE DISPATCH Address

Day Phone

Eve/Cell Phone

() - x3355

**EMAIL** 

Call Date: 28/01/2014 05:52 pm

Taken By: 120318-0

Customer Comments

Fire has laid absorbent at an MVA. Incident #F14003573. \*\*Police PO #14-520125

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 18 of 87



3569076

SR# 3569076

Request Type TRACC - Roads - Accidents/Claims

Request Date 28/01/2014 19:07

Taken By 120318-0

Incident Date 28/01/2014 19:07

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY HAMILTON

Location NBOUND LANE WHERE YOU MERGE ONTO THE HIGHWAY FROM MUD

Additional Information Quantum has been called and clean-up has taken place on January 28 / 2014. Paper work done by Dave

Due By

Due By

Due By

Due By

Thomas

Inspection

Inspector 083540-0

Scheduled 28/01/2014 19:07

\_\_\_\_

Started

Completed

Resolved 01/02/2014 08:23

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name POLICE DISPATCH Address

,

Day Phone

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By RSPAGNUOLO

Severity

Last Modified Date Time 01/02/2014 8:23:52

**EMAIL** 

Call Date: 28/01/2014 07:07 pm

Taken By: 120318-0

**Customer Comments** 

Police requesting oil cleanup from MVA - Police #520154

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 19 of 87



3569093

SR# 3569093

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 28/01/2014 20:38

Map #

Taken By 120318-0

Reference # Source

Incident Date 28/01/2014 20:38

Last Modified By RSPAGNUOLO

Priority EMRG - Emergency

Last Modified Date Time 01/02/2014 8:25:41

Project

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By **Reviewed Date** 

Address RED HILL VALLEY PKY HAMILTON

**Location** AT KING STREET IN THE NBOUND LANE

Additional Information Quantum has been called and clean-up has taken place on January 28 / 2014, Paper work done by

Inspection

Inspector 083540-0

Scheduled 28/01/2014 20:38

Due By

Started

Due By

Completed

Due By

Resolved 01/02/2014 08:25

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

Severity

POLICE DISPATCH

**EMAIL** 

Call Date: 28/01/2014 08:38 pm

Taken By: 120318-0

Customer Comments

mva fluid clean up. Police incident #520244

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 20 of 87



3767046

SR# 3767046

Request Type TRACC - Roads - Accidents/Claims

Request Date 20/05/2014 21:59

Taken By 112920-0

Incident Date 20/05/2014 22:19

**Priority** 

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Address RED HILL VALLEY PKY HAMILTON

Location

Additional Information Quantum has been called and clean-up has taken place on May 20 / 2014 paper work done by G.Burgoin

Inspection

Inspector 083540-0

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 22/05/2014 15:02

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name POLICE

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By RSPAGNUOLO

Severity

Last Modified Date Time 22/05/2014 15:02:39

Call Date: 20/05/2014 09:59 pm

Taken By: 112920-0

**Customer Comments** 

guard rail damage and fluid. Inc #P14-607555

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 21 of 87

1



3831570

SR # 3831570

Request Type TRACC - Roads - Accidents/Claims

Request Date 07/07/2014 20:45

Taken By 112920-0

Incident Date 07/07/2014 22:19

**Priority** 

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location

Additional Information Quantum has been called an clean-up has taken place on July 07 / 2104, Paper work done by Jay

Uhelak and Damage to the guard rails pictures foward to Paul Mcshane by Supervisor Reinaldo

Spagnuolo.

Inspection

Inspector 083540-0

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 11/07/2014 18:24

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

Area WARD4

Last Modified By RSPAGNUOLO

Severity

1

Last Modified Date Time 11/07/2014 18:24:21

Sub-area

District

Source

Reviewed By Reviewed Date

Map # Reference #

**EMAIL** 

Call Date: 07/07/2014 08:45 pm

Taken By: 112920-0

**Customer Comments** 

south of Queenston. Damage to guard rail. P14-718344

Logs

Printed Date Time:
Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 22 of 87



3843355

SR # 3843355

Request Type TRACC - Roads - Accidents/Claims

Request Date 17/07/2014 08:00

Taken By 117961-0

Incident Date 17/07/2014 08:00

**Priority** 

Responsibility TRND - ROADS NORTH

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Customer Ref No Address

Location

Additional Information Referred to D.N ForemenJULY 18/14 - DONE JULY 17/14

Inspection

Inspector

Scheduled

Started Completed

Resolved 18/07/2014 09:47

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Name

HAMILTON POLICE

Call Date: 17/07/2014 08:00 am

**Customer Comments** 

Logs

Area WARD4-5

Sub-area

**District** Map #

Reference #

Source

Last Modified By KMARK

Last Modified Date Time 18/07/2014 9:47:49

Reviewed By

**Reviewed Date** 

Severity

Day Phone

Eve/Cell Phone

**EMAIL** 

Taken By: 117961-0

July 17,2014- Hamilton police are requesting clean up of tire debris (blown out tire) Red hill valley parkway, going

Due By

Due By

Due By

Due By

South bound p14-726-309, Badge 105

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 23 of 87



3845737

SR # 3845737

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

**District** 

Request Date 19/07/2014 16:03

Map#

Taken By 120318-0

Reference # Source

Incident Date 19/07/2014 16:03

**Priority** 

Last Modified By SCAPOSTAGNO

Last Modified Date Time 19/07/2014 18:14:08

Severity

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Project

Reviewed Date

Address RED HILL VALLEY PKY HAMILTON

Location NBOUND JUST BEFORE GREENHILL; ALL THE WAY ACROSS THE ROAD

Additional Information CALL SPILL

Inspection

Inspector

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 19/07/2014 18:14 Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 19/07/2014 04:03 pm

Primary Caller

Name

Customer Ref No

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

FIRE DISPATCH

Taken By: 120318-0

Customer Comments

Absorbent pick-up for MVA. Fire incident #F14022003. Police incident #728379

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 24 of 87



3868527

SR# 3868527

Request Type TRACC - Roads - Accidents/Claims

Request Date 08/08/2014 18:50

Taken By 117839-0

Incident Date 08/08/2014 18:50

Priority

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY HAMILTON

Location GOING SOUTHBOUND, 100M SOUTH OF THE DARTNALL EXIT

Additional Information call spill

Inspection

Inspector 013956-0

Scheduled 08/08/2014 18:49

Due By

Started

Due By

Completed

Due By

Resolved 08/08/2014 22:38

22:38 <u>Due By</u>

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Address

Name

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

**District** 

Source

Reviewed By Reviewed Date

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 08/08/2014 22:38:17

Map # Reference #

HAMILTON FIRE

<u>Call Date:</u> 08/08/2014 06:50 pm

Taken By: 117839-0

Customer Comments

F14-024127 - request for absorbant clean up

Logs

Printed Date Time:

Report Location

ne: 19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 25 of 87



3904856

SR# 3904856

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area

District

Request Date 06/09/2014 16:11

Мар#

Taken By 121648-0

Reference #

Incident Date 06/09/2014 16:11

Source

**Priority** 

Last Modified By RSPAGNUOLO

Last Modified Date Time 08/09/2014 20:10:12

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By **Reviewed Date** 

Project

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location NORTH BOUND ON RED HILL BETWEEN QUEENSTON AND BARTON

DEBRIS FROM MVA REMAINS

Additional Information Debris has been pick-up on Sept/ 06 /2014 by K. Valodze.

Inspection

Inspector 083540-0

Severity

Scheduled 06/09/2014 16:14

Due By

Started

Due By

Completed

Due By

Resolved 08/09/2014 20:10

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 06/09/2014 04:11 pm

Taken By: 121648-0

Customer Comments

incident no. 14770795

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 26 of 87



3910662

SR# 3910662

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 10/09/2014 20:16

Мар#

Taken By 112920-0

Reference #

Incident Date 10/09/2014 20:16

Source

**Priority** 

Last Modified By RSPAGNUOLO

Last Modified Date Time 13/09/2014 8:26:39

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

**Reviewed Date** 

Location

Additional Information Aero Board was delivered by Jay Uhelak to Police on Sept/10/2014.

Inspection

Inspector 083540-0

Severity

1

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 13/09/2014 08:26

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name POLICE Address

Day Phone

EMAIL

Eve/Cell Phone

Call Date: 10/09/2014 08:16 pm

Taken By: 112920-0

**Customer Comments** 

request for arrowboard at S/B Mud/Stone Church exit due to mvc. Inc#P14-774508

Logs



3910687

SR # 3910687

Area WARD4-5

. Request Type TRACC - Roads - Accidents/Claims

Sub-area

Request Date 10/09/2014 22:48

District

Map #

Taken By 112920-0

Reference # Source

Incident Date 10/09/2014 22:48

**Priority** 

Last Modified By RSPAGNUOLO

Last Modified Date Time 13/09/2014 8:29:49

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

**Reviewed Date** 

Location

Additional Information Quantum has attended and clean-up has taken place on Sept/10/2014 and Paper work done by Jay

Severity

Uhelak under John Durant directions due to change shift.

Inspection

Inspector 083540-0

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 13/09/2014 08:29

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 10/09/2014 10:48 pm

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

**POLICE** 

Taken By: 112920-0

Customer Comments

N/B south of King. Guard rail damage. Inc #P14-774615

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 28 of 87



3925074

SR# 3925074

Request Type TRACC - Roads - Accidents/Claims

Request Date 22/09/2014 22:56

Taken By 112920-0

Incident Date 22/09/2014 22:56

Priority

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Project

Address RED HILL VALLEY PKY HAMILTON

Location

Additional Information QUANTUM CALLED FOR SPILL CLEAN-UP

Inspection

Inspector 056380-0

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 30/09/2014 00:47

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Call Date: 22/09/2014 10:56 pm

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Severity

Sub-area

**District** 

Source

Reviewed By Reviewed Date

Last Modified By JDURANT

Last Modified Date Time 30/09/2014 0:47:17

Map # Reference #

POLICE

Taken By: 112920-0

Customer Comments

S/B exit to Queenston. Fluid from mvc...lnc #P14-784514

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 29 of 87



3943791

SR# 3943791

Request Type TRACC - Roads - Accidents/Claims

Request Date 08/10/2014 07:51

Taken By 113584-0

Incident Date 08/10/2014 07:51

Priority -

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location DARTNALL

Additional Information

Inspection

Inspector 021992-0

Scheduled 08/10/2014 07:58

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 12:22

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Last Modified By cspiak

Reviewed By Reviewed Date

Last Modified Date Time 17/03/2017 12:23:05

Map # Reference #

FIRE

<u>Call Date:</u> 08/10/2014 07:51 am

Taken By: 113584-0

Customer Comments

MVA-absorbant SB south of Dartnall-incident # F14030765 badge # 508

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 12:23:05PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 30 of 87



3962864

SR# 3962864

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 27/10/2014 07:57

Map #

Taken By 119206-0

Reference # Source

Incident Date 27/10/2014 07:57

Last Modified By JMANNING

Priority EMRG - Emergency

Last Modified Date Time 28/10/2014 7:52:49

Responsibility TRND - ROADS NORTH

Reviewed By **Reviewed Date** 

Project

Address RED: HILL VALLEY PKY HAMILTON

Location VEHICLE DEBRIS CLEANUP- INCIDENT# 14812425 - RED HILL NORTH AT QUEENSTON

Additional Information

Inspection

Inspector 105099-0

Severity

Scheduled 27/10/2014 08:00

Due By

Started

Due By

Completed

Due By

Resolved 28/10/2014 07:52

Due By

Resolution D - DEBRIS CLEANED UP

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

HAMILTON POLICE

Call Date: 27/10/2014 07:57 am

Taken By: 119206-0

Customer Comments

Disptached to Roads North Jay Manning @ 8:01INCIDENT# 14812425

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 31 of 87



3962886

SR # 3962886

Request Type TRACC - Roads - Accidents/Claims

Request Date 27/10/2014 08:21

Taken By 119206-0

Incident Date 27/10/2014 08:21

Priority EMRG - Emergency

Responsibility TRND - ROADS NORTH

Address RED HILL VALLEY PKY HAMILTON

Location @ QUEENSTON - ABSOBANT

Additional Information

Inspection

Inspector 105099-0

Scheduled 27/10/2014 08:21

Started

Completed

Resolved 28/10/2014 07:50

Resolution D - DEBRIS CLEANED UP

**Contacts Information** 

Primary Caller

HAMILTON FIRE

Name

Customer Ref No

Address

Day Phone

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

**District** 

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By JMANNING

Last Modified Date Time 28/10/2014 7:50:09

**EMAIL** 

Due By

Due By

Due By

Due By

Call Date: 27/10/2014 08:21 am

Taken By: 119206-0

**Customer Comments** 

incident# f14032711 - red hill and king north boundfire laid absorbant, asking if we can clean up.

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 32 of 87



3968001

SR# 3968001

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 31/10/2014 19:37

Мар#

Taken By 117839-0

Reference #

Incident Date 31/10/2014 19:37

Source

Last Modified By RSPAGNUOLO

**Priority** 

Last Modified Date Time 02/11/2014 11:18:17

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By **Reviewed Date** 

Address RED HILL VALLEY PKY HAMILTON

Location AT KING GOING NORTHBOUND

Additional Information Quantum attended and clean up has taken place on Ocotber 31/2014 paper work done by John Corsini

and Dave Desjardins also attended location.

Inspection

Inspector 083540-0

Severity

Scheduled 31/10/2014 19:37

Started

Due By Due By

Completed

Due By

Resolved 02/11/2014 11:18

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 31/10/2014 07:37 pm

Taken By: 117839-0

**Customer Comments** 

Incident P14-815985 - 6 car pile up - request for fluids and debris clean up

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 33 of 87



3968531

SR # 3968531

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Source

Request Date 01/11/2014 16:26

Map #

Reference #

Taken By 107516-1

Incident Date 01/11/2014 16:26

Last Modified By CDELLAPIETRA

Priority EMRG - Emergency

Last Modified Date Time 13/11/2014 16:10:47

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location ON RAMP TO GREEN HILL

Additional Information Gate Pole has been damage it was foward to Traffic Dept. to replace signages and pictures to Paul

McShane for permanente repairs .Replaced damaged markers on 10/11/2014 by #091189-0

Inspection

Inspector 083540-0

Severity

Scheduled 01/11/2014 16:26

Due By

Started

Due By

Completed

Due By

Resolved 02/11/2014 11:26

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 01/11/2014 04:26 pm

Taken By: 107516-1

**Customer Comments** 

MVA - gate on the on ramp onto the north bound green hill - pole to lock the gate is damagerd and two florescent poles

- Incident # 816 413

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 34 of 87



3974873

SR # 3974873

Request Type TRACC - Roads - Accidents/Claims

Request Date 08/11/2014 19:53

Taken By 107516-1

Incident Date 08/11/2014 19:53

Priority EMRG - Emergency

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Address RED HILL VALLEY PKY HAMILTON

Location @ KING

Additional Information

Area WARD4-5

Sub-area

District

Map# Reference #

Source

Last Modified By cspiak

Last Modified Date Time 17/03/2017 12:26:35

Reviewed By

Reviewed Date

Inspection

Inspector 058830-0

Scheduled 08/11/2014 19:52

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 12:26

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

HAMILTON POLICE

<u>Address</u>

Day Phone

Eve/Cell Phone

Severity

**EMAIL** 

Call Date: 08/11/2014 07:53 pm

Taken By: 107516-1

**Customer Comments** 

damage on red hill - north bound ramp from king street, guard rail has been damage and the reflectors - Incident #

P14 822 091

.ogs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 12:26:35PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 35 of 87



3976868

SR # 3976868

Request Type TRACC - Roads - Accidents/Claims

Request Date 11/11/2014 06:56

Taken By 115417-0

Incident Date 11/11/2014 06:56

Priority -

Responsibility TRND - ROADS NORTH

Project -

Address RED HILL VALLEY PKY HAMILTON

Location NORTH BOUND JUST BEFORE QEW NIAGARA

Additional Information

**Map** #

Area WARD4-5

Severity

Sub-area District

Reference #

Source

Last Modified By cspiak

Last Modified Date Time 17/03/2017 12:27:31

Reviewed By

Reviewed Date

Inspection

Inspector 105099-0

Scheduled 11/11/2014 07:00

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 12:27

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 11/11/2014 06:56 am

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

HAMILTON POLICE

Taken By: 115417-0

Customer Comments

fluid clean up from mvc - incident #823 792

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 12:27:30PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 36 of 87

1



3979842

SR# 3979842

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

Request Date 13/11/2014 16:43

District

Map # Reference #

Taken By 119206-0

Source

Incident Date 13/11/2014 16:43

Last Modified By cspiak

Priority EMRG - Emergency

Last Modified Date Time 17/03/2017 12:28:32

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location HAMILTON POLICE CALLED IN REGARDS TO NORTH BOUND ON REDHILL WHERE @ MUD/STONECHURCH ON RAMP - DRYWALL AND WOOD CLEAN UP - INCIDENT# 825492

Additional Information

Inspection

Inspector 058830-0

Severity

Scheduled 13/11/2014 16:43

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 12:28

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 13/11/2014 04:43 pm

Taken By: 119206-0

Customer Comments

HAMILTON POLICE CALLED IN REGARDS TO NORTH BOUND ON REDHILL WHERE @ MUD/STONECHURCH ON

RAMP - DRYWALL AND WOOD CLEAN UP - INCIDENT# 825492dispatched to #306 @ 16:43 for clean up.

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 12:28:32PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 37 of 87



3984357

SR # 3984357

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 18/11/2014 17:37

Map # Reference #

Taken By 121849-0

Incident Date 18/11/2014 17:37

Source

**Priority** 

Last Modified By cspiak

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Last Modified Date Time 17/03/2017 13:44:46 Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location S BOUND RED HILL VALLEY, WHERE HWY MEETS THE LINCOLN, THERE IS A LARGE METAL

COIL IN THE LANE. CALLED IN BY POLICE INCIDENT #14-829055

Additional Information

Inspection

Inspector

Severity

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 13:44

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 18/11/2014 05:37 pm

Taken By: 121849-0

Customer Comments

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 1:44:00PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 38 of 87



3988331

SR# 3988331

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 23/11/2014 17:15

Map #

Taken By 121849-0

Reference #

Incident Date 23/11/2014 17:15

Source

Priority

Last Modified By RSPAGNUOLO

Last Modified Date Time 29/11/2014 7:21:32

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By

Reviewed Date

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location SOUTH BOUND OFF RAMP-DEBRIS CLEAN UP AND RAMP BLOCKING. INCIDENT # 14-832602

Additional Information Location has been check and no action required at this time it was checked by Karl Valodze on

November, 23/2014.

Inspection

Inspector 083540-0

Severity

1

Scheduled 23/11/2014 17:13

Due By

Started

Due By

Completed

Due By

Resolved 29/11/2014 07:21

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 23/11/2014 05:15 pm

Taken By: 121849-0

Customer Comments

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 39 of 87



3993172

SR# 3993172

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 27/11/2014 16:51

Map #

Reference #

Taken By 121849-0

Source

Incident Date 27/11/2014 16:51

**Priority** 

Last Modified By RSPAGNUOLO

Last Modified Date Time 29/11/2014 7:50:20

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By ·

Project

Reviewed Date

Address RED HILL VALLEY PKY HAMILTON

Location @ STONECHURCH EXIT SOUTHBOUND, POLICE RESPONDING TO MVA, ICY ROAD CONDITIONS.

INCIDENT # 14-835788

Additional Information As I was off on this date the call was handed by Supervisor John Scipione, on November 27/2014.

Inspection

Inspector 083540-0

Severity

Scheduled 27/11/2014 16:50

Due By

Started

Due By

Completed

Due By

Resolved 29/11/2014 07:50

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 27/11/2014 04:51 pm

Taken By: 121849-0

Customer Comments

Logs

Printed Date Time:

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

--- Page 40 of 87



3997790

SR # 3997790

Request Type TRACC - Roads - Accidents/Claims

Request Date 03/12/2014 07:53

Taken By 113451-0

Incident Date 03/12/2014 07:53

Priority

Responsibility TRND - ROADS NORTH

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location N/B SOUTH OF KING

Additional Information

Inspection

Inspector 105099-0

Scheduled

Started

<u>Due By</u> <u>Due By</u>

Due By

Completed

Due By

Resolved 04/12/2014 07:29

Resolution D - DEBRIS CLEANED UP

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Severity

Sub-area

District

<u>Map #</u> Reference #

Source

Reviewed By Reviewed Date

Last Modified By JMANNING

Last Modified Date Time 04/12/2014 7:29:57

HAMILTON FIRE

Call Date: 03/12/2014 07:53 am

Taken By: 113451-0

Customer Comments

Absorbant cleanup from MVC. Inc# F14-036884Incident # P14 839 823

Logs

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 41 of 87



4018237

SR # 4018237

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Map #

Request Date 25/12/2014 08:55

Reference #

Taken By 120322-0

Source

Incident Date 25/12/2014 08:55

Last Modified By RSPAGNUOLO

Priority EMRG - Emergency

Last Modified Date Time 28/12/2014 10:06:51

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Project

Address RED HILL VALLEY PKY HAMILTON

**Reviewed Date** 

Location NORTH BOUND LANES JUST SOUTH OF KING STREET - DAMAGED GUARD RAILS

Additional Information Quantum has been called and clean-up has taken place on Dec/25/2014 Paper work done by Chris

Marchionda.

Inspection

Inspector 083540-0

Severity

Scheduled 25/12/2014 09:04

Due By

Started

Due By

Completed

Due By

Resolved 28/12/2014 10:06

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 25/12/2014 08:55 am

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

HAMILTON POLICE

Taken By: 120322-0

Customer Comments

as per the Hamilton Police there is an accident at the locaton provided - extensive damage to the guadrailsPolice

Incident #855590

Logs

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 42 of 87



4018248

SR# 4018248

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 25/12/2014 11:02

Map #

Taken By 120322-0

Reference #

Incident Date 25/12/2014 11:02

Source

Priority EMRG - Emergency

Last Modified By RSPAGNUOLO

Reviewed Date

Last Modified Date Time 28/12/2014 10:11:28

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Project

Address RED HILL VALLEY PKY HAMILTON

Location RED HILL VALLEY PARKWAY - @ QUEENSTON RAMP - ACCIDENT - GUARDRAIL HIT AND

DAMAGED

Additional Information Damage has been reported with Pictures sent to Paul Mcshane on Dec/28/2014. Paper work done by

C.Marchionda.

Inspection

Inspector 083540-0

Severity

Scheduled 25/12/2014 11:18

Due By

Started

Due By

Completed

Due By

Resolved 28/12/2014 10:11

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 25/12/2014 11:02 am

Primary Caller

Customer Ref No

Name

Address

Day Phone

EMAIL

Eve/Cell Phone

HAMILTON POLICE

Taken By: 120322-0

**Customer Comments** 

RED HILL VALLEY PARKWAY - @ QUEENSTON RAMP - ACCIDENT - GUARDRAIL HIT AND DAMAGEDPOICE

Incident #14-855625

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 43 of 87



4018249

SR# 4018249

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 25/12/2014 11:02

Map # Reference #

Taken By 120322-0

Source

Incident Date 25/12/2014 11:02

Last Modified By RSPAGNUOLO

Priority EMRG - Emergency

Last Modified Date Time 28/12/2014 10:12:49

Reviewed By

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location RED HILL VALLEY PARKWAY - @ KING STREET EXIT/RAMP - ACCIDENT - GUARDRAIL HIT AND

DAMAGED

Additional Information Quantum has been called and clean-up has taken place on Dec/25/2014 and Paper work done by C.

Marchionda, Pictures fowarded to Paul Mcshane on Dec/28/2014.

Inspection

Inspector 083540-0

Severity

1

Scheduled 25/12/2014 11:18

Due By

Started

Due By

Completed

Due By

Resolved 28/12/2014 10:12

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

HAMILTON POLICE

Call Date: 25/12/2014 11:02 am

Taken By: 120322-0

**Customer Comments** 

RED HILL VALLEY PARKWAY - @ KING STREET EXIT/RAMP - ACCIDENT - GUARDRAIL HIT AND DAMAGEDPOlice

Incident #14-855642- PONIAC #14-855632- MAZDA 3

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 44 of 87



4018251

SR # 4018251

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 25/12/2014 11:27

**Map** #

Reference #

Taken By 120322-0

Source

Incident Date 25/12/2014 11:27 Priority EMRG - Emergency

Last Modified By RSPAGNUOLO

Responsibility TRAD - ROADS AFTER HOURS DAYS

Last Modified Date Time 28/12/2014 10:15:51

Project

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

**Reviewed Date** 

Location ACCIDENT ON RED HILL VALLEY PKY AT GREENHILL EXIT - GUARD RAIL DAMAGED

Additional Information Damage has been reported and pictures sent to Paul Mcshane on Dec/28/2014 Paper work done by

Chris Marchionda.

Inspection

Inspector 083540-0

Severity

Scheduled 25/12/2014 11:29

Due By

Started

Due By

Completed

Due By

Resolved 28/12/2014 10:15

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 25/12/2014 11:27 am

Taken By: 120322-0

Customer Comments

POLICE INCIDENT #855632ACCIDENT ON THE RED HILL VALLEY PKY AT GREENHILL EXIT - GUARD RAIL

DAMAGED

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 45 of 87



4018282

SR # 4018282

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 25/12/2014 00:08

Map # Reference #

Taken By 107516-1

Incident Date 25/12/2014 00:08

Source

Priority EMRG - Emergency

Last Modified By PMAFFEI

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Last Modified Date Time 14/01/2015 0:10:16

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location KING OFF RAMP

Additional Information NOTE: Patrick called this into me at 23:00 as he needed the Officer Name. I could not locate a Hansen

in the system for this call so I created one.

Inspection

Inspector 121999-0

Severity

Scheduled 25/12/2014 23:04

Due By

Started

Due By

Completed

Due By

Resolved 14/01/2015 00:10

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

PATRICK ROADS NORTH

Address

Day Phone

Eve/Cell Phone

()-**EMAIL** 

Call Date: 25/12/2014 12:08 am

Taken By: 107516-1

**Customer Comments** 

MVA debris and guardrail damage. Retaining wall damaged Incident # P14 855 469 Officer Buck on site badge #359

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 46 of 87



4022890

SR# 4022890

Request Type TRACC - Roads - Accidents/Claims

Request Date 01/01/2015 14:35

Taken By 107516-1

Incident Date 01/01/2015 14:35

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY HAMILTON

Location SOUTH OF GREENHILL

Additional Information

Inspection

Inspector 110225-0

Scheduled 01/01/2015 14:35

Due By

Started

Due By

Completed

Due By

Resolved 01/01/2015 21:00

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By LBROWNE

Last Modified Date Time 01/01/2015 21:00:25

Severity

Map # Reference #

HAMILTON POLICE

Call Date: 01/01/2015 02:35 pm

Taken By: 107516-1

Customer Comments

South bound lane rolling construction pilon - south of green hill Incident P15 500 404 >> Karl Valodze responded to the call and picked up the barrel in question and the placed it back where the rest of them were. In front of a damaged guard rail.

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 47 of 87



12909326

SR# 12909326

Request Type TRACC - Roads - Accidents/Claims

Request Date 23/01/2015 16:35

Taken By 107516-1

Incident Date

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

**Project** 

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location SOUTHBOUND BETWEEN BARTON AND QUEENSTON

Additional Information call spill

Additions

Inspection

Inspector 013956-0

Scheduled 23/01/2015 16:41

Due By

Started

Due By

Completed

Due By

Resolved 23/01/2015 18:06

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By SCAPOSTAGNO

Severity

Last Modified Date Time 23/01/2015 18:07:03

Map # Reference #

HAMILTON POLICE

Call Date: 23/01/2015 04:35 pm

Taken By: 107516-1

Customer Comments

fluid clean MVA - Incident # P 15 517 234

Logs

Printed Date Time:
Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 48 of 87



12953241

SR# 12953241

Request Type TRACC - Roads - Accidents/Claims

Request Date 27/02/2015 08:17

Taken By 107516-1

Incident Date

Priority EMRG - Emergency

Responsibility TRND - ROADS NORTH

Project -

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location between Barton and Queenston

Additional Information

Inspection

Inspector 105099-0

Scheduled 27/02/2015 08:22

Due By

Started

Due By

Completed

Due By

Resolved 07/02/2017 14:54

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u>

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Sub-area

**District** 

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By cagallant

Last Modified Date Time 07/02/2017 14:54:50

Severity

HAMILTON POLICE

Call Date: 27/02/2015 08:17 am

Taken By: 107516-1

Customer Comments

Roof top sign from a truck school - south bound between Barton and Queenston - Incident # 15 543 452

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 49 of 87



12955845

SR # 12955845

Request Type TRACC - Roads - Accidents/Claims

Request Date 28/02/2015 15:30

Taken By 119206-0

Incident Date

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project -

Address RED HILL VALLEY PKY / PND RED HILL VALLEY WD 4 HAMILTON

Location south of Barton street, NB lane, car hit guard rail - debris clean up needed - incident #544554

Additional Information James West responded to the call and with the help of the Tow truck driver the debri was removed.

Inspection

Inspector 110225-0

Scheduled 28/02/2015 15:36

Due By

Started

Due By

Completed

Due By

Resolved 28/02/2015 16:23

Due By

Resolution TRWIP - WORK IN PROGRESS

Contacts Information

Primary Caller

Customer Ref No

Name police

Address

Day Phone

Eve/Cell Phone

Severity

Area WARD4

Sub-area

District

Source

Reviewed By **Reviewed Date** 

Last Modified By gmckerracher

Last Modified Date Time 05/03/2015 15:09:54

Map # Reference #

**EMAIL** 

Call Date: 28/02/2015 03:30 pm

Taken By: 119206-0

**Customer Comments** 

South of Barton street, NB lane, car hit guard rail - debris clean up needed - incident #544554 - dispatched to les

brown @ 15:35

ogs

Log Type and Description

Start Date Time

Started By

Comments

HPESV - SITE VISIT

3/3/2015 2:01:00PM

057830-0

1.7 meters needs to be re-straitening on the west side for the reflective end cap marker

1 steel post needs to be re-straiten

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 50 of 87



12998189

SR # 12998189

Request Type TRACC - Roads - Accidents/Claims

Request Date 25/03/2015 17:10

Taken By 113451-0

Incident Date

Priority -

Responsibility TRND - ROADS NORTH

Project -

Address RED HILL VALLEY PKY HAMILTON

Location Between King and Queenston, N/B

Additional Information Pictures has been taken from that Guard-Rail and foward to the investigators at North District. Paper

Due By

Due By

Due By

Due By

work done by Chris Marchionda on March, 25/2015.

Inspection

Inspector 083540-0

Scheduled 25/03/2015 17:18

Started

Completed

Resolved 27/03/2015 07:35

Resolution TRWIP - WORK IN PROGRESS

Contacts Information

Primary Caller

Customer Ref No

Name

Hamilton Police

Address

Day Phone

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By rspagnuolo

Last Modified Date Time 30/03/2015 17:49:08

Map # Reference #

**EMAIL** 

Call Date: 25/03/2015 05:10 pm

Taken By: 113451-0

Customer Comments

Guardrail damage from MVC. Inc# P15-563972

Logs

Log Type and Description TWCS - STAFF COMMENTS Start Date Time

3/27/2015 7:46:22AM

Started By

057830-0

Comments

11.34 meters of guard rail needs to be replace

Ref to Paul McShane for repair

Ref # AC7N-15181 Work Order # 5110671

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 51 of 87 .



13002288

SR # 13002288

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 28/03/2015 22:53

**Map #** 

Taken By 121073-0

Reference # Source

Incident Date

Priority

Last Modified By pmaffei

Last Modified Date Time 31/03/2015 1:19:22

Reviewed By

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

**Reviewed Date** 

**Project** 

Address RED HILL VALLEY PKY / PND RED HILL VALLEY WD 4 HAMILTON

Location NORTH BOUND LANES - NORTH OF MUD - VEH INTO GUARD RAIL

Additional Information MVA on the RHVP this morning. A car stuck the concrete barrier on the north bound side. Damage to the barrier and no injuries were reported. Air temp was -6, and road -8, road conditions were B/D. Quantum was called in for

fluid clean-up.

P15 566 560 PC Mitchell # 1223

Inspection

Inspector 121999-0

Severity

Scheduled 28/03/2015 23:05

Due By

Started

Due By

Completed

Due By

Resolved 31/03/2015 01:19

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name POLICE - 566560 Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Call Date: 28/03/2015 10:53 pm

Taken By: 121073-0

Customer Comments

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 52 of 87



13015194

SR # 13015194

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 08/04/2015 05:35

Map #

Taken By 115417-0

Reference #

Source

Incident Date

Last Modified By pmaffei

**Priority** 

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Last Modified Date Time 16/04/2015 5:30:55

Reviewed By

Project -

Reviewed Date

Address RED HILL VALLEY PKY HAMILTON

Location MUD STREET ON RAMP - POLE TAKEN OUT

Additional Information No pole taken out, just a traffic marker that was written up and taken to traffic yard. Ed Wood on site

Inspection

Inspector 121999-0

Severity

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 16/04/2015 05:30

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

HAMILTON POLICE

**EMAIL** 

Call Date: 08/04/2015 05:35 am

Taken By: 115417-0

Customer Comments

INCIDENT #15 574 314

Logs



Due By

Due By

Due By

Due By

13017380

SR# 13017380

Request Type TRACC - Roads - Accidents/Claims

Request Date 08/04/2015 19:35

Taken By 117839-0

Incident Date

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location heading northbound on Red Hill just at the Mount Albion overpass

Additional Information

Inspection

Inspector 083540-0

Scheduled 08/04/2015 19:37

Started

Completed

Resolved 09/04/2015 10:11

Resolution HPENP - NO PROBLEM FOUND

Contacts Information

Primary Caller

Customer Ref No

Address

Day Phone

EMAIL

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By gmckerracher

Last Modified Date Time 09/04/2015 15:26:45

Severity

Hamilton Police

Call Date: 08/04/2015 07:35 pm

Taken By: 117839-0

Incident P15-574815 - MVC car has hit the guardrail Police on scene.

Logs

Name

Log Type and Description

Start Date Time

Started By

Comments

HPESV - SITE VISIT

4/9/2015 3:26:00PM

057830-0

no problem found with guardrail all is in good

working condition.

150 meters to the south of this location is a

damage guard rail

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 54 of 87.



13040242

SR# 13040242

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 21/04/2015 17:32

Map #

Reference #

Taken By 121073-0

Source

Incident Date

Last Modified By gmckerracher

Priority

Last Modified Date Time 28/04/2015 7:23:34

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Project -

Reviewed Date

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location GUARD RAIL DAMAGED - NORTH BOUND LANES - BETWEEN KING & QUEENSTON

Additional Information

Inspection

Inspector 013956-0

Severity

Scheduled 21/04/2015 17:38

Due By

Started

Due By

Completed

Due By

Resolved 21/04/2015 18:43

Due By

Resolution TRWIP - WORK IN PROGRESS

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

POLICE - P15-584-924

Call Date: 21/04/2015 05:32 pm

Taken By: 121073-0

**Customer Comments** 

12 meters of guard rail needs to be replace, 4 steel post, 4 wooden blocks are in need to be replace repair sheet has been sent to Paul McShane with Work order # 5119002 REFF # AC7N-240 as been set up for this

repair.

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 55 of 87



13066417

SR# 13066417

Request Type TRACC - Roads - Accidents/Claims

Request Date 06/05/2015 04:51

Taken By 115417-0

Incident Date

Priority -

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location SB @ KING ST

Additional Information QUANTUM HAS BEEN CALLED FOR ALL FLUID CLEAN-UP.

Inspection

Inspector 023545-0

Scheduled 06/05/2015 04:51

Due By

Started

Due By

Completed

Due By
Due By

Resolved 07/05/2015 05:14

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Area WARD4-5

Severity

Sub-area

District

Source

Last Modified By jdurant

Reviewed By Reviewed Date

Last Modified Date Time 07/05/2015 5:15:10

Map # Reference #

HAMILTON POLICE

Call Date: 06/05/2015 04:51 am

Taken By: 115417-0

Customer Comments

FLUID, DEBRIS & BIO-HAZARD CLEAN UP

INCIDENT # 15 596 572

Logs

Printed Date Time:
Report Location

<u>Time:</u> 19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 56 of 87



13083454

SR # 13083454

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 15/05/2015 02:16

Мар#

Taken By 122088-0

Reference # Source

Incident Date

Last Modified By pmaffei

Priority

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Last Modified Date Time 20/05/2015 22:52:02

Project -

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

Reviewed Date

Location northbound fast lane just s of Greenhill ave exit - large dark object debris

Additional Information Debris safely removed from RHVP. J. Chiarelli onsite

Inspection

Inspector 121999-0

Severity

Scheduled 15/05/2015 02:22

Due By

Started

Due By

Completed

Due By

Resolved 20/05/2015 22:51

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

**HPolice** 

Call Date: 15/05/2015 02:16 am

Taken By: 122088-0

Incident # p15-604757, northbound fast lane just s of Greenhill ave exit - large dark object/debris

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 57 of 87



Due By

Due By

Due By

Due By

13097221

SR # 13097221

Request Type TRACC - Roads - Accidents/Claims

Request Date 23/05/2015 11:05

Taken By 121073-0

Incident Date

Priority -

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location north bound before mud st on ramp - fluid and debris

Additional Information

Inspection

Inspector 013956-0

Scheduled 23/05/2015 11:07

Started

Resolved 26/05/2015 14:38

Completed

Resolution TRWIP - WORK IN PROGRESS

Customer Ref No

police 15-611945

Primary Caller

Name

Address

Day Phone

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By gmckerracher

Last Modified Date Time 26/05/2015 15:07:28

Severity

Map # Reference #

**EMAIL** 

Call Date: 23/05/2015 11:05 am

Contacts Information

Taken By: 121073-0

Customer Comments

Logs

Log Type and Description

HPSDW - INSPECTIONS

Start Date Time

5/26/2015 3:07:28PM

Started By

057830-0

Comments

8 meters of guard rail needs to be replace REFF

# to Paul McShane for repair. REFF # AC7N-15323 Work Oder # 5134924

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 58 of 87

1



13111151

SR # 13111151

Request Type TRACC - Roads - Accidents/Claims

Request Date 31/05/2015 17:06

Taken By 120322-0

Incident Date

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Project

Address RED HILL VALLEY PKY HAMILTON

Location on the Redhill Valley Pkwy - north bound in center lane - just south of King

Additional Information

Inspection

Inspector 013956-0

Scheduled 31/05/2015 17:08

Due By

Started

Due By

Completed

Due By

Resolved 04/06/2015 07:43

Due By

Resolution TRWIP - WORK IN PROGRESS

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

**District** 

Map # Reference #

Source

Reviewed By Reviewed Date

Last Modified By gmckerracher

Last Modified Date Time 04/06/2015 8:08:13

Hamilton Police

Call Date: 31/05/2015 05:06 pm

Taken By: 120322-0

**Customer Comments** 

Police Incident #15-619319

as per Hamilton Police they need fluid cleanup at the location provided due to an MVC

ogs

Log Type and Description

Start Date Time

Started By

Comments

DESITE - SITE VISIT

6/4/2015 8:08:00AM

057830-0

22 meters of guardrail needs replacing

5 steel post needs replacing & 5 steel post

needs to be straightened
4 bumper needs to be reset

REF #AC7N-15356 W/O #5139096

Sent to Paul McShane for repair.

Printed Date Time:

19/09/2017 13:37:43

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 59 of 87

1



13138199

SR# 13138199

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

**District** 

Request Date 14/06/2015 14:31

Мар# Reference #

Taken By 119206-0

Source

Incident Date

Last Modified By scapostagno

Priority EMRG - Emergency

Last Modified Date Time 14/06/2015 18:38:16

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Reviewed Date

Project -

Address RED HILL VALLEY PKY HAMILTON

Location red hill valley parkway, mud street on ramp - car flipped over, reflectors taken out, please investigate-

incident # 631014

transmission fluid also

Additional Information

Inspection

Inspector 013956-0

Severity

Scheduled 14/06/2015 14:39

Due By

Started

Due By

Completed

Due By

Resolved 14/06/2015 18:38

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 14/06/2015 02:31 pm

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Hamilton police

Taken By: 119206-0

Customer Comments

Called over to #705 @ 14:34 and Reinaldo asked that we hold this call for Sam Capostagno #701 when he comes on

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 60 of 87



13164872

SR# 13164872

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 27/06/2015 18:06

Map #

Taken By 119206-0

Reference # Source

Incident Date

Last Modified By scapostagno

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Last Modified Date Time 27/06/2015 19:23:51

Reviewed By

Reviewed Date

Project -

Address RED HILL VALLEY PKY HAMILTON

<u>Location</u> redhill valley parkway going north bound towards the greenhill exit - a blue Honda civic done some

damage to guard rail

incident # 642552

Additional Information

Inspection

Inspector 013956-0

Severity

Scheduled 27/06/2015 18:09

Due By

Started

Due By

Completed

Due By

Resolved 27/06/2015 19:23

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

hamilton police

**EMAIL** 

Call Date: 27/06/2015 06:06 pm

Taken By: 119206-0

Customer Comments

redhill valley parkway going north bound towards the greenhill exit - a blue Honda civic done some damage to guard

incident # 642552

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 61 of 87



Due By

Due By

Due By

Due By

13164902

SR # 13164902

Request Type TRACC - Roads - Accidents/Claims

Request Date 27/06/2015 20:38

Taken By 121849-0

Incident Date

Priority -

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Project -

Address RED HILL VALLEY PKY / QUEENSTON RD HAMILTON

Location police incident # 15-642676

Guard raid damaged.

Additional Information

Inspection

Inspector 013956-0

Scheduled 27/06/2015 21:02

Started

Completed

Resolved 17/03/2017 15:01

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name Police

<u>Address</u>

Day Phone

Eve/Cell Phone

Area WARD4

Sub-area

**District** 

Source

Last Modified By cspiak

Reviewed By Reviewed Date

Last Modified Date Time 17/03/2017 15:02:07

Severity

<u> Map #</u> Reference #

**EMAIL** 

Call Date: 27/06/2015 08:38 pm

Taken By: 121849-0

Customer Comments

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 3:02:08PM

AGENCY06

Assumed complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43 Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 62 of 87



13164983

SR # 13164983

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 28/06/2015 09:22

Map #

Taken By 121849-0

Reference #

Incident Date

Source

Priority -

Last Modified By rspagnuolo

Last Modified Date Time 06/07/2015 15:39:08

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By Reviewed Date

Project -

Address RED HILL VALLEY PKY HAMILTON

Location @ Green hill, bridge for CN rail, underneath, guard rail damaged from MVA 15-643007

Additional Information Quantum has been called and clean-up has taken place on June 28 / 2015 and paper work done by

Chris Marchionda.

Inspection

Inspector 083540-0

Severity

Scheduled 28/06/2015 09:30

Due By

Started

Due By

Completed

Due By

Resolved 28/06/2015 15:38

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 28/06/2015 09:22 am

Taken By: 121849-0

Customer Comments

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 63 of 87



13165039

SR# 13165039

Request Type TRACC - Roads - Accidents/Claims

Request Date 28/06/2015 12:51

Taken By 121849-0

Incident Date

Priority -

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location MVA fluid and debris clean up F15-020862

Additional Information Quantum was called and clean-up ha staken place on June 28 / 2015 and Paper work done by Chris

Due By

Due By

Due By

Due By

Inspection

Inspector 083540-0

Scheduled 28/06/2015 12:52

Started

Completed

Resolved 28/06/2015 18:26

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Address

Name Fire

Call Date: 28/06/2015 12:51 pm

Taken By: 121849-0

Customer Comments

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 64 of 87

Area WARD4-5

Severity

Eve/Cell Phone

Sub-area

District

Source

Reviewed By Reviewed Date

Day Phone

**EMAIL** 

Last Modified By rspagnuolo

Last Modified Date Time 06/07/2015 18:28:09

Мар# Reference #



13165041

SR # 13165041

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 28/06/2015 12:51

Map #

Taken By 121073-0

Reference #

Incident Date

Source

Last Modified By rspagnuolo

Priority -

Last Modified Date Time 06/07/2015 18:22:07

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By **Reviewed Date** 

Project -

Address RED HILL VALLEY PKY HAMILTON

Location NORTH BOUND ON THE KING ST OFF RAMP - ON BEND - WANT CONES & ARROW BOARD IF

WE HAVE IT

Additional Information | I spoke to the Officer and No Cones or Arrow Board was need anymore. On june 28 / 2015.

Inspection

Inspector 083540-0

Severity

Scheduled 28/06/2015 13:02

Due By

Started

Due By

Completed

Due By

Resolved 28/06/2015 18:21

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name POLICE - 643211 Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 28/06/2015 12:51 pm

Taken By: 121073-0

Customer Comments

ogs

Report Location



13165073

SR# 13165073

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

District

Request Date 28/06/2015 14:44

Map #

Taken By 121849-0

Reference # Source

Incident Date

Last Modified By rspagnuolo

Reviewed Date

Priority -

Last Modified Date Time 06/07/2015 18:41:09

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Project -

Address RED HILL VALLEY PKY HAMILTON

Location @ Green Hill - steel rebar in lanes and Tent @ Mud.

Police incident # 15-643211 (steel) & 15-643208 (tent tarp)

Additional Information Patrol Man did find debris and tarp but no rebar on June 28 / 2015. Checked by Jim West, Christopher

Hasse and

Antony Spagnuolo.

Inspection

Inspector 083540-0

Severity

Scheduled 28/06/2015 14:49

Due By

Started

Due By

Completed

Due By

Resolved 28/06/2015 18:40

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name police Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Call Date: 28/06/2015 02:44 pm

Taken By: 121849-0

**Customer Comments** 

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 66 of 87



13182886

SR # 13182886

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 07/07/2015 19:30

Map #

Taken By 112920-0

Reference # Source

Incident Date

Priority -

Last Modified By rspagnuolo

Last Modified Date Time 12/07/2015 13:10:02

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By Reviewed Date

Address RED HILL VALLEY PKY / BARTON STE HAMILTON

Location

Additional Information Quantum has been called and clean-up has taken place on July 07/2015 Paper work done by Jay

Inspection

Inspector 083540-0

Severity

Scheduled 07/07/2015 19:32

Due By

Started

Due By

Completed

Due By

Resolved 07/07/2015 13:09

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 07/07/2015 07:30 pm

Primary Caller

Customer Ref No

Name **FIRE** 

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Taken By: 112920-0

Customer Comments

FLUID IN 2 LOCATIONS

N/B EXIT TO KING ST AND N/B UNDER THE MOUNT ALBION BRIDGE

F15-021881

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 67 of 87



13187948

SR # 13187948

Request Type TRACC - Roads - Accidents/Claims

Request Date 10/07/2015 08:05

Taken By 121849-0

Incident Date

Priority -

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location POLICE 15-653201- DEBRIS CLEAN UP @ MUD

Additional Information

Inspection

Inspector

Scheduled

Started

Completed

Resolved 17/03/2017 15:02

Resolution TRPS - PROBLEM SOLVED

Address

Customer Ref No

Due By

Due By

Due By

Due By

Day Phone

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

District

Source

Last Modified By cspiak

Reviewed By **Reviewed Date** 

Last Modified Date Time 17/03/2017 15:02:53

Мар# Reference #

**EMAIL** 

Call Date: 10/07/2015 08:05 am

**Contacts Information** 

Taken By: 121849-0

Customer Comments

Primary Caller

Name

Logs

Log Type and Description

TWCS - STAFF COMMENTS

Start Date Time

3/17/2017 3:02:53PM

Started By

AGENCY06

Comments

Assume complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 68 of 87

1



13213732

SR # 13213732

Request Type TRACC - Roads - Accidents/Claims

Request Date 24/07/2015 04:39

Taken By 115417-0

Incident Date

Priority -

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Address RED HILL VALLEY PKY HAMILTON

Location NORTHBOUND THEN SOUTH OF GREENHILL

Additional Information Duplicate work order

Source Last Modified By pmaffei

Sub-area

**District** 

Map # Reference #

Last Modified Date Time 26/07/2015 5:36:52

Area WARD4-5

Reviewed By

**Reviewed Date** 

Inspection

Inspector 121999-0

Scheduled 24/07/2015 04:41

Due By

Started

Due By

Completed

Due By

Resolved 26/07/2015 05:33

Due By

Resolution CSDUP - DUPLICATE SERVICE REQUEST

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

<u>EMAIL</u>

Eve/Cell Phone

HAMILTON POLICE

Call Date: 24/07/2015 04:39 am

Taken By: 115417-0

Customer Comments

DEBRIS CLEAN UP AND GUARDRAIL DAMAGE - INCIDENT # 665 054

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 69 of 87

1



13229617

SR # 13229617

Request Type TRACC - Roads - Accidents/Claims

Request Date 03/08/2015 07:34

Taken By 119206-0

Incident Date

Priority EMRG - Emergency

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location north bound lanes on red hill - exit on king, incident #673606

Additional Information

Inspection

Inspector 021455-0

<u>Scheduled</u> 03/08/2015 07:38

Started

Completed

Resolved 03/08/2015 11:33

Resolution TRPS - PROBLEM SOLVED

Primary Caller

Name hamilton police Customer Ref No

Address

Day Phone

Eve/Cell Phone

Area WARD4-5

Sub-area

District

Source

Reviewed By Reviewed Date

Last Modified By rdelconte

Last Modified Date Time 03/08/2015 11:39:51

Map # Reference #

**EMAIL** 

Call Date: 03/08/2015 07:34 am

Contacts Information

Taken By: 119206-0

Customer Comments

dispatched to rob delconte @ 7:36am - Accident scene cleaned up by Quantum Murray Emergency Response and

Due By

Due By

Due By

Due By

City Force (Rick Oshanek)

.ogs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 70 of 87

1

Severity



13232591

SR # 13232591

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 04/08/2015 17:18

Map #

Taken By 113451-0

Reference # Source

Incident Date

Last Modified By rspagnuolo

Priority -

Last Modified Date Time 08/08/2015 10:08:12

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Reviewed Date

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location

Additional Information We checked this location N/B and S/B twice and did not find anything on August 08/ 2015. Police left

the scene and made more dificult to find it.

inspection

Inspector 083540-0

Severity

Scheduled 04/08/2015 17:23

Due By

Started

Due By

Completed

Due By

Resolved 04/08/2015 10:08

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

Eve/Cell Phone

Hamilton Police

**EMAIL** 

Call Date: 04/08/2015 05:18 pm

Taken By: 113451-0

**Customer Comments** 

Guardrail damage from MVC. Inc# P15-674694

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 71 of 87



13264029

SR # 13264029

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 22/08/2015 13:18

Map #

Reference #

Taken By 121849-0

Source

Incident Date

Last Modified By rspagnuolo

Priority -

Last Modified Date Time 25/08/2015 18:01:30

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Reviewed Date

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location Just north of Barton NB lanes, oil spill

police on scene 15-689409

Additional Information Quantum has been called and clean-up has taken place on August, 22 - 2015 paper work done by Chris

Inspection

Inspector 083540-0

Severity

Scheduled 22/08/2015 13:26

Due By

Started

Due By

Completed

Due By

Resolved 22/08/2015 18:01

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

<u>Name</u> police

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Call Date: 22/08/2015 01:18 pm

Taken By: 121849-0

**Customer Comments** 

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 72 of 87



13286067

SR# 13286067

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

Source

Request Date 03/09/2015 17:31

District Мар#

Taken By 107516-1

Reference #

Incident Date

Last Modified By scapostagno

Priority EMRG - Emergency

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Last Modified Date Time 04/09/2015 22:33:37

**Reviewed Date** 

Reviewed By

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location redhill - fluid clean up

Additional Information

Inspection

Inspector 013956-0

Severity

1

Scheduled 03/09/2015 17:37

Due By

Started

Due By

Completed

Due By

Resolved 04/09/2015 22:33

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

hamilton Police

Call Date: 03/09/2015 05:31 pm

Taken By: 107516-1

**Customer Comments** 

redhill pky north bound at mud street on ramp - Inc # 15 699 699

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 73 of 87



SR# 13299214

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 12/09/2015 00:41

Map #

Taken By 120322-0

Reference #

Incident Date

Source

Priority EMRG - Emergency

Last Modified By cspiak

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Last Modified Date Time 17/03/2017 15:18:13

Reviewed By Reviewed Date

**Project** 

Address RED HILL VALLEY PKY HAMILTON

Location accident on the Red Hill Valley Parkway at the King Street exit - guard rail is destroyed - no fluid cleaup

but there is debris on the road

Police Incident # 15-706600

Additional Information

Inspection

Inspector 056380-0

Severity

Scheduled 12/09/2015 01:38

Due By

Started

Due By

Completed

Due By

Resolved 17/03/2017 15:18

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Hamilton Police

Call Date: 12/09/2015 12:41 am

Taken By: 120322-0

**Customer Comments** 

Police Incident #15-706600 - guard rail damaged at the location provided due to an accident

Logs

Log Type and Description

Start Date Time

Started By

Comments

TWCS - STAFF COMMENTS

3/17/2017 3:18:14PM

AGENCY06

Assume Complete - cspiak

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 74 of 87



13299588

SR # 13299588

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 13/09/2015 09:21

Map #

Source

Taken By 121073-0

Reference #

Incident Date

Priority -

Last Modified By rspagnuolo

Last Modified Date Time 14/09/2015 22:53:09

Responsibility TRAD - ROADS AFTER HOURS DAYS

Reviewed By

Reviewed Date

Project

Address RED HILL VALLEY PKY HAMILTON

Location FLUIDS - NORTH BOUND LANES - NORTH OF GREENHILL

Additional Information Quantum has been called and clean-up has taken place on September, 13 / 2015, Paper work done by

Mike Defazio and Chris Marchionda

Inspection

Inspector 083540-0

Scheduled 13/09/2015 09:53

Severity

Due By

Started

Due By

Completed

Due By

Resolved 13/09/2015 22:51

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

POLICE - 707493

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 13/09/2015 09:21 am

Taken By: 121073-0

Customer Comments

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 75 of 87



13304961

SR # 13304961

Request Type TRACC - Roads - Accidents/Claims

Request Date 16/09/2015 08:11

Taken By 120322-0

Incident Date

Priority EMRG - Emergency

Responsibility TRND - ROADS NORTH

Project -

Address RED HILL VALLEY PKY HAMILTON

Location on the Red Hill Valley Pky - just north of Stone Church Rd. in the N/B lane

Additional Information

Inspection

Inspector 105099-0

Scheduled 16/09/2015 08:19

Due By

Started

Completed Due By

Resolved 09/02/2017 11:58

Due By

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

District

Source

Reviewed By **Reviewed Date** 

Last Modified By cagallant

Last Modified Date Time 09/02/2017 11:58:06

Map # Reference #

Hamilton Police

Call Date: 16/09/2015 08:11 am

Taken By: 120322-0

Customer Comments

Police Incident # 709691 - as per Hamilton Police fluid cleanup is required due to an MVC at the location provided

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 76 of 87



13311612

SR # 13311612

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area

District

Request Date 19/09/2015 16:17

Мар#

Taken By 121475-0

Reference # Source

Incident Date

Last Modified By amiller

Priority -

Reviewed Date

Last Modified Date Time 19/09/2015 20:04:36

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

Address RED HILL VALLEY PKY HAMILTON

Location north bound Red Hill Parkway just north of Greenhill-fluid clean up - also barrier has been struck on left

Additional Information barrier was actually on the right side

Inspection

Inspector 013956-0

Severity

Scheduled 19/09/2015 16:20

Due By

Started

Due By

Completed

Due By

Resolved 19/09/2015 17:55

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

<u>Name</u> police

Logs

Address

Day Phone

Eve/Cell Phone

**EMAIL** 

Call Date: 19/09/2015 04:17 pm

Taken By: 121475-0

Customer Comments

P15-712573

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 77 of 87



13329834

SR # 13329834

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 29/09/2015 22:45

Map#

Taken By 112920-0

Reference # Source

Incident Date

Last Modified By pmaffei

Priority -

Last Modified Date Time 30/09/2015 1:01:47

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By

Reviewed Date

Location

Address RED HILL VALLEY PKY / PND RED HILL VALLEY WD 4 HAMILTON

Additional Information Quantum called for fluid clean-up

Inspection

Inspector 056380-0

Severity

Scheduled 29/09/2015 22:46

Due By

Started

Due By

Completed

Due By .

Resolved 30/09/2015 01:01

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

**POLICE** 

Call Date: 29/09/2015 10:45 pm

Taken By: 112920-0

**Customer Comments** 

FLUID FROM MVC...INC #P15-720977 S/B BETWEEN STONE CHURCH AND MUD

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 78 of 87



13336472

SR # 13336472

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Request Date 03/10/2015 17:03

Map #

Taken By 122088-0

Reference # Source

Incident Date

Last Modified By scapostagno

Priority -

Last Modified Date Time 03/10/2015 22:15:22

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By **Reviewed Date** 

Project -

Address RED HILL VALLEY PKY HAMILTON

Location TIGER TAIL KNOCKED - TOWARDS STONE CHURCH - SOUTHBOUND RAMP - STONE AND

DEBRIS CLEAN UP

Additional Information

Inspection

Inspector 013956-0

Scheduled 03/10/2015 17:07

Due By

Started

Due By

Completed

Due By

Resolved 03/10/2015 22:15

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Address

Day Phone

Eve/Cell Phone

Name POLICE

**EMAIL** 

Call Date: 03/10/2015 05:03 pm

Taken By: 122088-0

**Customer Comments** 

P15-723957

Hamilton Police called at 1742 hrs advising that crew on site unable to advise that fluid clean

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 79 of 87



13336571

SR # 13336571

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Reguest Date 04/10/2015 09:52

Map#

Taken By 122088-0

Reference #

Incident Date

Source

Priority

Last Modified By cagallant

Responsibility TRND - ROADS NORTH

Last Modified Date Time 09/02/2017 12:10:24

Reviewed By

**Project** 

Reviewed Date

Address RED HILL VALLEY PKY HAMILTON

Location Damage to guardrail - south of king, near northbound lane - per police not an emergency

Additional Information 2 issues: Damage to guardrail - p15-724345, damage to grass - same location p15-724324

Per police neither are emergency so not assigning

Inspection

Inspector

Severity

Scheduled

Due By

Started

Due By

Completed

Due By

Resolved 09/02/2017 12:10

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name police

Logs

Address

Day Phone

**EMAIL** 

Call Date: 04/10/2015 09:52 am

Taken By: 122088-0

**Customer Comments** 

p15-724345

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 80 of 87



13345588

SR # 13345588

Request Type TRACC - Roads - Accidents/Claims

Request Date 09/10/2015 08:19

Taken By 113584-0

Incident Date

. Priority EMRG - Emergency

Responsibility TRAD - ROADS AFTER HOURS DAYS

Address RED HILL VALLEY PKY HAMILTON

Location King St E-between Greenhill & Mount Albion

Additional Information

Area WARD4-5

Sub-area

District

**Map** # Reference #

Source

Last Modified By cagallant

Last Modified Date Time 24/02/2017 16:15:45

Reviewed By

Reviewed Date

Inspection

Inspector 105099-0

Scheduled 09/10/2015 08:32

Due By

Started

Due By

Completed

Due By

Resolved 24/02/2017 16:15

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name police

Address

Day Phone

Eve/Cell Phone

Severity

**EMAIL** 

Call Date: 09/10/2015 08:19 am

Taken By: 113584-0

**Customer Comments** 

NB-MVA-incident # 728030 badge # 30-absorbant & debris

Fire Incident #F15-033138

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 81 of 87



Due By

Due By

Due By

Due By

13355077

SR# 13355077

Request Type TRACC - Roads - Accidents/Claims

Request Date 16/10/2015 01:13

Taken By 115417-0

Incident Date

Priority -

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location NORTHBOUND -NORTH OF MUD ON RAMP TO REDHILL

Additional Information

Inspection

Inspector 056380-0

Scheduled 16/10/2015 01:14

Started

Completed

Resolved 17/03/2017 14:53 Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Name

HAMILTON POLICE

Call Date: 16/10/2015 01:13 am

Customer Comments

DEBRIS AND FLUID CLEAN UP FROM MVC - INCIDENT # 733 247

Customer Ref No

Address

Taken By: 115417-0

Logs

Log Type and Description

Start Date Time

Started By

Comments

Day Phone

**EMAIL** 

TWCS - STAFF COMMENTS

3/17/2017 2:54:04PM

AGENCY06

Assumed complete - cspiak

Area WARD4-5

Sub-area

District

**Map** # Reference #

Source

Last Modified By cspiak

Reviewed By Reviewed Date

Last Modified Date Time 17/03/2017 14:54:04

Eve/Cell Phone

Severity

1

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 82 of 87



13363127

SR # 13363127

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 20/10/2015 23:40

<u>Map #</u>

Taken By 112920-0

Reference #

Incident Date

Source

Priority -

Last Modified By pmaffei

Last Modified Date Time 21/10/2015 3:54:58

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By

Reviewed Date

Address RED HILL VALLEY PKY HAMILTON

Location

Additional Information Approx 50' of guardrail damaged from MVA. Area cleaned up by the time we arrived. Cones put down

over affected area. Road was damp

Inspection

Inspector 121999-0

Severity

Scheduled 20/10/2015 23:42

Due By

Started

Due By

Due By

Completed

Resolved 21/10/2015 03:54

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name

<u>Address</u>

Day Phone

Eve/Cell Phone

POLICE

**EMAIL** 

Call Date: 20/10/2015 11:40 pm

Taken By: 112920-0

**Customer Comments** 

GUARD RAIL HIT - N/B UNDER MT ALBION OVERPASS. INC #P15-736921

Logs

Report Location



13369554

SR # 13369554

Area WARD4

Request Type TRACC - Roads - Accidents/Claims

Sub-area District

Reguest Date 24/10/2015 17:01

Map #

Taken By 122685-0

Reference #

Incident Date

Source

Priority -

Last Modified By scapostagno

Last Modified Date Time 24/10/2015 21:56:30

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By

**Reviewed Date** 

Address RED HILL VALLEY PKY / PND RED HILL VALLEY WD 4 HAMILTON

Location south bound lanes at Barton Street

Additional Information

Inspection

Inspector 013956-0

Severity

Scheduled 24/10/2015 17:08

Due By

Started

Due By

Completed

Due By

Resolved 24/10/2015 21:56

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

Police

Call Date: 24/10/2015 05:01 pm

Taken By: 122685-0

Customer Comments

Police Incident 15-739768 - three major mvas - guard rail damage - lots of debris from accidents -request for debris clean up and sweep of area

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 84 of 87



13369565

SR # 13369565

Accidenta/Claims WARD4-5
Sub-area

Request Type TRACC - Roads - Accidents/Claims

<u>District</u> <u>Map #</u> Reference #

Taken By 121475-0

Request Date 24/10/2015 18:16

Source

Incident Date

Last Modified By scapostagno

Priority -

Last Modified Date Time 24/10/2015 21:54:37

Responsibility TRAA - ROADS AFTER HOURS AFTERNOONS

Reviewed By Reviewed Date

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location south of mud st bend in north bound lanes - fluid clean up

Additional Information

Inspection

Inspector 013956-0

Severity

1

Scheduled 24/10/2015 18:18

Due By

Started

Due By

Completed

Due By

Resolved 24/10/2015 21:54

Due By

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 24/10/2015 06:16 pm

Primary Caller

Customer Ref No

Name

Address

Day Phone

**EMAIL** 

Eve/Cell Phone

police

Taken By: 121475-0

Customer Comments

P15-739760

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 85 of 87



13369629

SR # 13369629

Area WARD4-5

Request Type TRACC - Roads - Accidents/Claims

Sub-area **District** 

Request Date 25/10/2015 02:50

Map #

Taken By 121073-0

Reference # Source

Incident Date

Priority -

Last Modified By pmaffei

Last Modified Date Time 11/11/2015 2:29:17

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Reviewed By

Project -

Address RED HILL VALLEY PKY HAMILTON

Reviewed Date

Location

Additional Information We had a single vehicle MVA on the N/B RHVP last night at 2:50am. There was damage to the guardrail in two

locations (see images for reference)

No Quantum

Road conditions were damp No injuries were reported

P15 740 111

Hansen # 13369629

Inspection

Inspector 121999-0

Severity

Scheduled 25/10/2015 02:51

Due By

Started

Due By

Completed

Due By

Resolved 11/11/2015 02:29

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

POLICE - 740111

Name

<u>Address</u>

Day Phone

**EMAIL** 

Eve/Cell Phone

Call Date: 25/10/2015 02:50 am

Taken By: 121073-0

Customer Comments

CAR VERSES GUARD RAIL - NORTH BOUND LANES - SOUTH OF KING ST RAMP

Logs

Printed Date Time:

Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 86 of 87



13376453

SR # 13376453

Request Type TRACC - Roads - Accidents/Claims

Request Date 28/10/2015 22:57

Taken By 112920-0

Incident Date

Priority -

Responsibility TRAN - ROADS AFTER HOURS NIGHTS

Project -

Address RED HILL VALLEY PKY HAMILTON

Location

Additional Information Cones put down at site of damage. No police on site to provide any details

Inspection

Inspector 121999-0

Scheduled 28/10/2015 23:10

Started

Resolved 11/11/2015 02:42

Completed

Due By Due By

Due By

Due By

Resolution TRPS - PROBLEM SOLVED

Contacts Information

Primary Caller

Customer Ref No

Name POLICE

<u>Address</u>

Day Phone

Eve/Cell Phone

Severity

Area WARD4-5

Sub-area

District

Map # Reference #

Source

Last Modified By pmaffei

Reviewed By Reviewed Date

Last Modified Date Time 11/11/2015 2:43:01

**EMAIL** 

Call Date: 28/10/2015 10:57 pm

Taken By: 112920-0

**Customer Comments** 

BETWEEN KING AND QUEENSTON - GUARD RAIL DAMAGE FROM MVC...INC #P15-742844

Logs

Printed Date Time: Report Location

19/09/2017 13:37:43

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 87 of 87



# **Project Team**

#### Prepared By:

Alex Nolet, P.Eng.

Ben Robertson, C.E.T.

Giovani Bottesini, E.I.T.

Maurice Masliah, Ph.D.

Brian Applebee, C.E.T., TOPS

#### Reviewed By:

Ali Hadayeghi, P.Eng., Ph.D.

Brian Malone, P.Eng., PTOE

3000325



# **Executive Summary**

The Red Hill Valley Parkway (RHVP) has a long history in Hamilton. Because of the unique area through which the RHVP traverses, and because of the costs associated with building a roadway on the escarpment, the City was faced with a lengthy planning, design and construction schedule. Furthermore, following recommencement of the project after one significant period of stoppage, the City identified several design refinements to the original alignment plan. These refinements included a general reducing in the number of lanes on the through section of RHVP as well as restricting illumination to ramp terminals and on/off ramps. In 2007 the RHVP was opened to traffic.

Since then Council has received residents' input relating primarily to illumination around the Mud Street interchange, the visibility of signage and pavement markings and a need to review potential devices that would assist motorists in safely traversing the roadway. As the result, Council put forward a motion to investigate a section of the RHVP which led to the commencement of this safety and operational study. The objectives of this study are to review a portion of the RHVP between Dartnall Road and Greenhill Road (as illustrated in **Figure 1**) to determine the safety performance of the roadway since opening in 2007 and recommend viable potential measures that could be implemented to increase the safety performance and/or drivers' sense of security.



The scope of this study included the review, analysis, development and assessment of the following key aspects:

CIMA+ // Partners in excellence



- \* Review and analysis of traffic volumes, speed and collisions;
- · Review and analysis of signs and markings;
- \* Review of human factors (and road user security);
- \* Review of roadside safety and hardware;
- Review of illumination in specific areas only (i.e. not throughout study area);
- ♣ Development of a long-list of viable potential countermeasures;
- \* Assessment of countermeasures using collision modification factors where available;
- \* Assessment of cost-benefit of countermeasures; and
- Recommendation of viable countermeasures.

The findings of the study indicated that, overall, the RHVP is operating safely when compared with other roads with similar characteristics. However, several locations were identified as performing worse than would be expected, and for those locations, various countermeasures were developed and scrutinized. This led to numerous recommendations for improvement as summarized in the following tables.

Each of the tables has a recommendation for timing, which are abbreviated as:

- ♣ Short Term (ST) = 0 5 years;
- ★ Medium Term (MT) = 5 10 years; and
- Long Term (LT) = 10+ years.

**Table 1** summarizes the overall study area countermeasures. These are countermeasures that apply to the study area in general and are not specifically related to any one section.

Table 1 - Overall Study Area Countermeasures

| Countermeasure               | B/C Ratio | Cost     | Timing |
|------------------------------|-----------|----------|--------|
| Friction Testing             | n/a       | \$10,000 | ST     |
| PRPM or                      | 3.29      | \$75,000 | ST     |
| Inverted Profile Markings    | n/a       | n/a*     | ST     |
| Wide Markings                | 3.39      | \$40,000 | ST     |
| Slippery When Wet Signs      | n/a       | \$5,000  | ST     |
| Enforcement of Travel Speeds | n/a       | n/a      | ST     |

200000



CIMA+ // Partners in excellence

| Countermeasure         | B/C Ratio | Cost    | Timing |
|------------------------|-----------|---------|--------|
| Trailblazer Signage    | n/a       | \$2,000 | ST     |
| Remove Lane Exit Signs | n/a       | \$1,000 | ST     |
| Total Costs            |           | \$13    | 33k    |

Table 2 summarizes the countermeasures that are related to the mainline segments of the RHVP.

Table 2 - Road Segment Countermeasures

| Name                          | Road<br>Segment   | Collisions                       | Field                                                                                                                    | Countermeasure                                                                                                                                 | B/C<br>Ratio | Cost           | Term  |
|-------------------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------|
| West of<br>Dartnall           | Dartnall<br>1 & 2 | + None                           | <ul> <li>No major findings</li> </ul>                                                                                    | + n/a                                                                                                                                          | → n/a        | ∻ n/a          | → n/a |
| Mud                           |                   |                                  | <ul> <li>Potentially<br/>restricted<br/>sightlines for<br/>merging traffic<br/>from Dartnall<br/>onto NB RHVP</li> </ul> | <ul> <li>Extend solid white line from gore</li> </ul>                                                                                          | <b>→</b> n/a | ÷ \$500        | ♦ ST  |
| Between Dartnall & Mud        | Darthall 3,4 & 5  | → 48% SMV                        | <ul> <li>Exit information<br/>sign partially<br/>obscured NB<br/>RHVP</li> </ul>                                         | <ul> <li>Remove Deer Warning<br/>sign</li> </ul>                                                                                               | → n/a        | <b>→</b> \$500 | * ST  |
| Be                            |                   |                                  | <ul> <li>Change in alignment in SB direction</li> </ul>                                                                  | <ul> <li>Alter SB alignment with<br/>pavement markings<br/>&amp; alteration to rumble<br/>strips &amp; possibly to<br/>the shoulder</li> </ul> | ❖ n/a        | ÷ \$4,000*     | ♦ ST  |
| Between<br>Mud &<br>Greenhill | Mud<br>1,2 & 3    | ◆ 60% SMV     ◆ 50% non-daylight | → Uneven terrain in<br>front of<br>guiderail NB                                                                          | + Flatten terrain or raise guiderail NB                                                                                                        | → n/a        | + n/a**        | + ST  |

B00032

// •

|      | *40* *              | Mary 4                                                                                        |                                                                                                          | 43 40 1 1 1 1 1 1                                                                     | 4.4.1        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |
|------|---------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|---------------------------------------|-------|
| Name | Road<br>Segment     | Collisions                                                                                    | Field                                                                                                    | Countermeasure                                                                        | B/C<br>Ratio | Cost                                  | Term  |
|      |                     | <ul><li>Exp. &gt;.</li><li>Pred. @</li><li>Mud 4</li></ul>                                    | Closely spaced & obscured signage at critical decision points SB                                         | → Relocate "ENGINE<br>BRAKES" sign NB                                                 | <b>→</b> n/a | <b>→</b> \$500                        | * ST  |
|      | Mud<br>4, 5 & 6     | <ul> <li>Primarily</li> <li>SMV</li> <li>High</li> <li>proportion</li> <li>of non-</li> </ul> | <ul> <li>Potentially confusing<br/>"keep right"<br/>sign NB</li> </ul>                                   | → Remove "Slower<br>Traffic" sign SB                                                  | → n/a        | <b>*</b> \$500                        | → ST  |
|      |                     | daylight &<br>wet<br>surface                                                                  | <ul> <li>Closely spaced &amp;<br/>obscured<br/>signage at<br/>critical decision<br/>points NB</li> </ul> | <ul> <li>Place "Object Marker"<br/>sign on same post as<br/>"Exit" sign SB</li> </ul> | ♦ n/a        | <b>*</b> \$500                        | ♦ ST  |
|      | Greenhill 1<br>to 4 | → None                                                                                        | No major findings                                                                                        | <b>+</b> n/a                                                                          | → n/a        | <b>+</b> n/a                          | → n/a |
|      | Total Co            | osts                                                                                          |                                                                                                          |                                                                                       |              | <b>*</b> \$6,500***                   |       |

<sup>\*</sup> Cost is for pavement markings only. Other potential required works could increase cost substantially

200000



<sup>\*\*</sup>It is expected that this countermeasure could be completed by City forces

<sup>\*\*\*</sup>Not including other potential works associated with the alignment adjustment

Table 3 - Ramp Countermeasures

|               | v 1                                                                                               | s ss 50                            | rubic o rump o                                                                                                     |                                          | *                  |                   | 2 2          |
|---------------|---------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|-------------------|--------------|
| Name          | Ramp                                                                                              | Collisions                         | Field                                                                                                              | Countermeasure                           | B/C<br>Ratio       | Cost              | Term         |
| nt.           | Ramp<br>1 & 2                                                                                     | <b>→</b> n/a                       | Culvert and drop-<br>off within<br>deflection area<br>of approach<br>eccentric loader<br>end treatment<br>(Ramp 2) | → End guiderail and change end treatment | <b>→</b> n/a       | <b>*</b> \$11,000 | + ST         |
| Dartnall Int. | Ramp                                                                                              | → n/a                              | ◆ No major findings                                                                                                | → n/a                                    | ∳n/a               | <b>→</b> n/a      | <b>→</b> n/a |
|               | Ramp<br>4                                                                                         | + n/a                              | <ul> <li>No major findings</li> </ul>                                                                              | or n/a                                   | → n/a              | ÷ n/a             | → n/a        |
|               | Ramp<br>5                                                                                         | •                                  | <ul> <li>Lane ends within curve</li> </ul>                                                                         | Restripe to one lane for each ramp       | ♦ n/a              | <b>÷</b> \$8,000  | → MT         |
|               | * Exp. > Pred.  * 65% of all ramp collisions * Closely spaced eclipsing signage at diverge point. | TAC illumination warrant justified | <ul> <li>Install lighting on ramp</li> </ul>                                                                       | <b>*</b> 3.78                            | <b>*</b> \$275,000 | → ST              |              |
| Mud Int.      |                                                                                                   | + 65% of all ramp                  | <ul> <li>Install high-friction<br/>pavement<br/>approaching and<br/>through curve</li> </ul>                       | <b>•</b> 2.32                            | <b>*</b> \$93,000  | → ST              |              |
|               |                                                                                                   | eclipsing signage at               | * Install progressively larger chevrons                                                                            | → n/a                                    | ÷ \$4,000          | + ST              |              |
|               |                                                                                                   | ♣ Evidence of lane                 | <ul> <li>Install pavement marking text</li> </ul>                                                                  | → n/a                                    | ÷ \$1,500          | → ST              |              |
|               |                                                                                                   |                                    | <ul> <li>Install dynamic /<br/>variable speed<br/>warning sign</li> </ul>                                          | → n/a                                    | ÷ \$7,000          | → ST              |              |

3000325

// vii

| 19 19 Y        | 2 f K 1         |                                                                                    |                                                  |                                                                     |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                    |                                                                      |       |                |
|----------------|-----------------|------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|--------------|----------------------------------------------------------|----------------------------------------------------------------------|-------|----------------|
| Name           | Ramp            | Collisions                                                                         | Field                                            | Countermeasure                                                      | B/C<br>Ratio | Cost                                                     | Term                                                                 |       |                |
|                |                 |                                                                                    |                                                  | <ul> <li>Install flashing<br/>amber beacons<br/>on signs</li> </ul> | → n/a        | <b>*</b> \$3,000                                         | ♦ ST                                                                 |       |                |
|                |                 |                                                                                    |                                                  | <ul> <li>Relocate signs</li> </ul>                                  | → n/a        | <b>*</b> \$2,000                                         | → ST                                                                 |       |                |
|                | Ramp<br>7a 7 7b | <ul><li>Exp. &gt; Pred.</li><li>80% of collisions</li><li>SMV</li></ul>            | Closely spaced & back dropped signage at diverge | → Relocate signs                                                    | → n/a        | <b>*</b> \$2,000                                         | → ST                                                                 |       |                |
|                | Re<br>7a        | <ul> <li>High proportion<br/>of non-<br/>daylight &amp;<br/>wet surface</li> </ul> | <ul> <li>Inappropriate merge sign</li> </ul>     | Replace merge sign<br>with Wa-123 Lane<br>Ends sign                 | → n/a        | <b>+</b> \$500                                           | + ST                                                                 |       |                |
|                | amp<br>8        | * Exp. > Pred., however very low # of collisions                                   | Size of information signs                        | Replace road name information signs with advance diagrammatic sign  | → n/a        | <b>*</b> \$5,000                                         | → ST                                                                 |       |                |
|                | E.              |                                                                                    |                                                  |                                                                     |              | <ul> <li>Inconsistent curve<br/>warning signs</li> </ul> | <ul> <li>Install consistent<br/>curve warning<br/>signage</li> </ul> | → n/a | <b>•</b> 1,000 |
| all lot.       | Ramp<br>9       | Exp. > Pred.,     however very     low# of     collisions                          | <ul> <li>No major findings</li> </ul>            | ♦ n/a                                                               | → n/a        | <b>→</b> n/a                                             | → n/a                                                                |       |                |
| Greenhill Int. | Ramp<br>10      | * Exp. > Pred.,<br>however very<br>low # of<br>collisions                          | <ul> <li>No major findings</li> </ul>            | <b>.</b> • n/a                                                      | + n/a        | → n/a                                                    | → n/a                                                                |       |                |
|                | Total Cos       | sts                                                                                |                                                  |                                                                     |              | ST = \$405,000<br>MT = \$8,000                           | 0                                                                    |       |                |
| MALE IN COLUMN |                 |                                                                                    | 100                                              |                                                                     |              |                                                          |                                                                      |       |                |

# **Table of Contents**

| Ex            | ecu | tive S  | Summary                                                                 | I    |
|---------------|-----|---------|-------------------------------------------------------------------------|------|
| 1.            | Int | rodu    | ction and Background                                                    |      |
| 2.            | Stı | udy C   | Dbjectives and Limitations                                              |      |
|               | 2.1 |         | Objectives                                                              |      |
|               | 2.2 |         | Limitations                                                             |      |
| 3.            | Sc  | ope a   | and Study Area                                                          |      |
|               | 3.1 | Study   | Scope                                                                   |      |
| 00<br>00 (00) |     |         | Area                                                                    |      |
| 8 63          | ( 5 |         | The man are at the trade that the fit are made in the                   | 2- 1 |
| 4.            | Sa  | fety F  | Review                                                                  | 4    |
|               | 4.1 | Collis  | ion Analysis                                                            |      |
|               |     | 4.1.1   | Methodology                                                             |      |
|               |     | 4.1.2   | Collision Analysis Results  Breakdown of Collisions.  Findings Summary. |      |
|               | 4.2 | Safety  | Analysis Using the Enhanced Interchange Safety Analyst Tool (ISATe)     | 12   |
|               |     | 4.2.1   |                                                                         |      |
|               |     | 4.2.2   | Methodology                                                             | 14   |
|               |     |         | Limitations of ISATe                                                    | 1    |
|               |     | 4.2.3   | ISATe Tool Results                                                      | 16   |
|               | 4.3 | Traffic | Operations                                                              | 19   |
|               | 4.4 | Illumii | nation Review                                                           | 19   |
|               |     | 4.4.1   | Methodology                                                             | 19   |
|               |     | 4.4.2   | Illumination Results                                                    | 21   |
|               | 4.5 | Field I | nvestigation and Human Factors Assessment                               | 22   |
|               |     | 4.5.1   | Methodology                                                             | 22   |
|               |     | 4.5.2   | Field Investigation Results – Overall Systematic Findings               | 22   |
|               |     |         | Signage                                                                 | 22   |
|               |     | 4.5.3   | Field Investigation Results – Location Specific Issues                  | 23   |
|               |     |         | RHVP Southbound Mainline                                                |      |
|               |     |         | RHVP Northbound Mainline                                                |      |
|               |     |         | Dartnall Road S-E On-Ramp (Ramp 2)                                      |      |
|               |     |         | WOOD SHEET WELL CHIERSHID (IZSHID 3)                                    | /    |

|    |                   |         | Mud Street E-W On-Ramp (Ramp 6)                                                 | 3        |
|----|-------------------|---------|---------------------------------------------------------------------------------|----------|
| ~  |                   |         | Mud Street E-N On-Ramp (Ramp 7a)                                                | 3        |
|    |                   |         | Stone Church Road East N-S Off-Ramp & Mud Street N-E Off-Ramp (Ramp 8)          |          |
| 5. | Su                | mma     | ry of Findings                                                                  | 34       |
| 5. |                   |         | al Countermeasures and Benefit-Cost Analysis                                    |          |
|    | 6.1               | Gene    | al Pavement Friction                                                            | 3        |
|    | 1                 | 6.1.1   | Perform Friction Testing                                                        |          |
|    | 6.2               | Overa   | Il Study Area Countermeasures                                                   | 3        |
|    | 5<br>5<br>1 = 4 0 | 6.2.1   | Permanent Raised Pavement Markings (PRPM)  Benefit-Cost Ratio                   | 3        |
| *  | (C) (C)           | - 6.2.2 | High Visibility Inverted Profile Pavement Markings  Benefit-Cost Ratio          |          |
|    | ř ř               | 6.2.3   | Wide Pavement Markings (102 mm to 150 mm)                                       |          |
|    |                   | 6.2.4   | Install Wc-105 Slippery When Wet Signs                                          |          |
|    | ¥                 | 6.2.5   | Enforcement of Travel Speeds  Benefit-Cost Ratio                                |          |
|    |                   | 6.2.6   | Rationalization of Trailblazer Signs                                            |          |
|    |                   | 6.2.7   | Remove Lane Exits Signs from Ramps                                              |          |
|    | 6.3               | Site S  | pecific Countermeasures                                                         | 41       |
|    |                   | 6.3.1   | Dartnall Segments 1 & 2                                                         | 41       |
|    | 8                 | 6.3.2   | Dartnall Segments 3, 4 & 5                                                      | 41<br>41 |
|    |                   | 6.3.3   | Mud Segments 1, 2 & 3  Flatten Slope or Raise Guiderail in Northbound Direction |          |
|    |                   | 6.3.4   | Mud Segments 4, 5 & 6                                                           | 43<br>43 |
|    |                   | 6.3.5   | Greenhill Segments 1 to 4                                                       | 44       |
|    |                   | 636     | Ramns 1 & 2                                                                     | 44       |



|             |        | Redesign End Treatment on Guiderali (Ramp 2)                    | 44  |
|-------------|--------|-----------------------------------------------------------------|-----|
| ,           | 6.3.7  | Ramps 3 & 4                                                     | 44  |
|             | 6.3.8  | Ramp 5                                                          | 44  |
| *           |        | Illumination                                                    |     |
| il<br>a a - |        | Revise Pavement Markings for Ramps                              | .45 |
|             | 6.3.9  | Ramp 6                                                          | .45 |
|             |        | Illumination                                                    |     |
| *E          |        | Install High Friction Pavement on Approach to and through Curve | .46 |
| E.          | 9      | Install Progressively Larger Chevron Signs                      | .46 |
|             |        | Install Pavement Marking Text                                   |     |
|             |        | Install Dynamic / Variable Warning Sign                         | .47 |
| *           | , .,   | Install Flashing Amber Beacons on Signs                         | .47 |
|             |        | Relocate Signs                                                  |     |
|             | 6.3.10 | Ramp 7a & 7b                                                    | .48 |
|             |        | Illumination                                                    | .49 |
|             |        | Relocate Signs as per Ramp 6                                    | .49 |
|             |        | Replace Merge Sign with Lane Ends Sign                          |     |
|             | 6.3.11 | Ramp 8                                                          |     |
|             |        | Illumination                                                    |     |
|             |        | Replace Road Name Signs with Advance Diagrammatic Sign.         |     |
|             |        | Install Consistent Curve Warning Signage                        |     |
|             | 6.3.12 | Ramps 9 & 10                                                    | 51  |
| 6.4         | Summa  | ary of Potential Countermeasures and B/C Ratios                 | 51  |



# 1. Introduction and Background

The Red Hill Valley Parkway (RHVP) has a long history in Hamilton. In December of 1982, the original Environmental Assessment (EA) documents were filed by the former Region of Hamilton-Wentworth that outlined the need, scope and timing for the expansion of the Regional road network. The EA identified that a roadway connecting Highway 403 in Ancaster to the QEW in east Hamilton was required. The original design for the roadway was completed in 1985, and the EA was approved by the Province in 1987. A subsequent Preliminary Design Report for RHVP was completed in January of 1990.

Construction of the Valley portion of the Parkway was begun in the early 1990s. Some aspects of funding, but not approvals, were halted and the project restarted in the mid-2000's. Construction of the Lincoln Alexander Parkway portion of the roadway went ahead and was completed in 1997, extending from Highway 403 to Dartnall Road.

In the early 1990's, the City entered into discussions with the Provincial government on how to further reduce impacts to the environment within the Valley section of the road. As a result of these discussions, in 1996, the City requested from the Province that they be allowed to undertake changes to the original designs and undertake a new EA. The Province approved this request in 1997 and work on the design changes and the new EA were begun and the City undertook an Impact Assessment and Design Process (IADP).

In 1999 the project was subject to panel hearing under the Canadian Environmental Assessment Act (CEAA). Construction in the Valley was placed on hold until 2002 when issues were resolved. In 2003 the design changes and the IADP were completed and construction on the Parkway recommenced. In 2007, the Red Hill Valley Parkway was opened to traffic and has been in operation since.

This safety study was commenced by the City following a motion put forward by City Council to investigate a section of the RHVP. The motion came as a result of residents' input relating primarily to illumination around the Mud Street interchange, the visibility of signage and pavement markings and a need to review potential devices that would assist motorists in safely traversing the roadway. The City proactively decided to undertake a safety and operational review of a portion of the parkway to examine the issues put forward by the motion as well as other aspects.

# 2. Study Objectives and Limitations

# 2.1 Study Objectives

The objectives of this study are to review a portion of the RHVP between Dartnall Road and Greenhill Road to determine the safety performance of the roadway since opening in 2007 and recommend viable potential measures that could be implemented to increase the safety performance and/or drivers' sense of security.

00325

#### 2.2 Study Limitations

When conducting road safety studies two generic areas of review are roadway geometry and design and illumination. However, as part of the Parkway's long history, the road design has been analyzed and refined several times, up to and including the design changes put forward in 2003, which formed part of the critical environmental agreements and approvals have been made.

Design choices on the facility were intimately linked to approvals. Reference materials note; "The sole reason for making design changes was to reduce environmental impacts." The Valley section of the Parkway traverses the Niagara Escarpment, a UNESCO World Biosphere Reserve, designated for its unique landform characteristics and the presence of a provincial land use plan to guide development in its area. It is one of only 16 biosphere reserves in Canada, and is part of a network of 598 in 117 countries. It is a rich mosaic of forests, farms, recreation areas, scenic views, cliffs, streams, wetlands, rolling hills, waterfalls, mineral resources, wildlife habitats, historic sites, villages, towns and cities. The Escarpment is home to more than 300 bird species, 53 mammals, 36 reptiles and amphibians, 90 fish and 100 varieties of special interest flora including 37 types of wild orchids. The Escarpment is home to almost 40% of Ontario's rare flora.<sup>2</sup>

Because of this unique area, and because of the costs associated with building a roadway on the escarpment, the City identified several design refinements to the alignment of the roadway within the Valley. These refinements, "...consider environmental benefits, driver safety, and construction cost..." and include the following specific to this review:

- Reducing through lanes from 3 northbound and 3 southbound to 2 northbound (with a truck climbing lane from Greenhill Avenue to Dartnall Road) and 2 southbound to reduce the footprint of the road and increase potential areas for restoration and reforestation;
- Redesigning the interchange with Greenhill Avenue (from a loop interchange to a diamond interchange) to reduce the required area (which protects specialized dry meadow, marsh and Escarpment habitats) and reduce the speed of vehicles exiting and entering the Parkway; and
- Restricting illumination to intersections and on/off ramps<sup>4</sup>

Through the City's IADP, these design changes were well scrutinized and the following<sup>5</sup> was found:

- The four-lane facility could safety accommodate 2021 projected traffic volumes;
- + The Parkway could operate at the 90 km/h posted speed during peak hours in the year 2021;

<sup>&</sup>lt;sup>5</sup> Red Hill Valley Impact and Design Process, City of Hamilton, Page 106



CIMA+ // Partners in excellence

<sup>&</sup>lt;sup>1</sup> Red Hill Valley Impact and Design Process, City of Hamilton, Page 3

<sup>&</sup>lt;sup>2</sup> http://www.escarpment.org/about/overview/index.php, Accessed July 2013

<sup>&</sup>lt;sup>3</sup> Red Hill Valley Impact and Design Process, City of Hamilton, Page 6

<sup>&</sup>lt;sup>4</sup> Red Hill Valley Project Public Consultation Report, March 2003, Lura Consulting, Page 136

- Interchanges at Mud Street and Greenhill Avenue would operate within an acceptable level of service;
- The design of the Parkway has taken into consideration the posted 90 km/h speed;
- \* Redesigns of the interchanges has considered the level of service; and
- \* The Parkway will operate safely.

Given the extensive history of the Parkway, the unique geography that it traverses, the many design refinements and assessments undertaken over the years, the many environmental agreements and approvals required, and the "urban expressway" nature of the design, it was determined that a review of the fundamental roadway design geometry of the roadway and illumination throughout the study area was beyond the scope of this study.

# 3. Scope and Study Area

#### 3.1 Study Scope

The scope of this study included the review, analysis, development and assessment of the following key aspects:

- + Review and analysis of traffic volumes, speed and collisions;
- · Review and analysis of signs and markings;
- Review of human factors (and road user security);
- \* Review of roadside safety and hardware;
- + Review of illumination in specific areas only (i.e. not throughout study area);
- Development of a long-list of viable potential countermeasures;
- + Assessment of countermeasures using collision modification factors where available;
- Assessment of cost-benefit of countermeasures; and
- Recommendation of viable countermeasures.

# 3.2 Study Area

The study area included the RHVP between Dartnall Road and Greenhill Avenue as well as the Mud Street/Stone Church Road intersection. Figure 2 illustrates the basic study area.

BOODS





Figure 2 - Study Area

# 4. Safety Review

The safety review undertaken for the RHVP included several tasks, including both qualitative and quantitative analyses. These included a quantitative collision and traffic operational analysis and qualitative field review including a review of human factors.

# 4.1 Collision Analysis

The purpose of the collision analysis is to identify locations that have a higher than average number of collisions and to identify locations where the proportion of different collision types are unusually high. CIMA conducted the analysis using two different methods. The first analysis used strictly the historical observed number of collisions. Segmentation of the collision data was performed at a high level where each ramp was treated separately while the mainline was divided by sections in between interchanges. The second analysis involved the use of analytical tool known as the Enhanced Interchange Safety Analysis Tool (ISATe) which required a further, more detailed segmentation. Therefore, the collision data was segmented a second time to meet the data input requirements of ISATe.

# 4.1.1 Methodology

Collision data were obtained from the City for a five-year period from October 10, 2008 to October 9, 2013. The collisions were provided for ten (10) ramps and a four kilometre stretch of RHVP from Dartnall Road to Greenhill Avenue.

The identification of collision trends within the study area was performed through a collision data review which considered descriptive statistics of collision conditions and locations. To help summarize collision data and to facilitate the identification of collision patterns, each collision was mapped and assigned to a road element; either a ramp or a mainline segment. The data needed to be segmented into homogeneous sections. A homogeneous section is one where the key characteristics of traffic volume, key geometric design features, and traffic control are unchanged throughout the section. A simple and straightforward segmentation was used in that each ramp was treated separately while the mainline was divided by sections in between interchanges. The various road elements included in the study area are listed in **Table 4** and illustrated in **Figure 3**.

Table 4 - List of Road Elements Included in the Study Area

| Ramp Names                                                                                                                                                                                                                                                                                                                                                                                                     | Mainline                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Ramp #1: Dartnall Rd EB-SB off ramp</li> <li>Ramp #2: Dartnall Rd NB-EB on ramp</li> <li>Ramp #3: Dartnall Rd NB-WB Loop on ramp</li> <li>Ramp #4: Dartnall WB off ramp</li> <li>Ramp #5: Mud NB-EB off ramp</li> <li>Ramp #6: Mud</li> <li>Ramp #7: Mud WB-NB on ramp</li> <li>Ramp #8: Mud SB-EB off ramp</li> <li>Ramp #9: RHVP NB to Greenhill</li> <li>Ramp #10: Greenhill to RHVP SB</li> </ul> | <ul> <li>RHVP west of Dartnall Rd</li> <li>RHVP Dartnall Rd and Mud St.</li> <li>RHVP between Mud St. and 0.4 km South of<br/>Greenhill Ave</li> <li>RHVP North 0.4 km South of Greenhill Ave</li> </ul> |



Figure 3 - Road Elements Included in the Study Area

The purpose of this collision analysis is to identify collision types that are over represented at different locations. The collision types that were analyzed included the following factors:

- Collision Severity: property damage only (PDO), non-fatal injury and fatal collisions;
- Collision Impact Type: single-motor vehicle (SMV), side swipe, rear-end, overtaking, head-on, right-turn, pedestrian and other collisions;
- + Lighting: daylight and non-daylight; and
- \* Road Surface: dry, snow/ice, wet and other.

### 4.1.2 Collision Analysis Results

The study area experienced a total of 174 collisions in the five years period reviewed, of which 62 occurred on ramps and the remaining 112 occurred on mainline segments. The collision distribution is shown in **Table 5**.

| Road Elements                                     | Length (m) | No. of Total Collisions | Proportion |
|---------------------------------------------------|------------|-------------------------|------------|
| Ra                                                | mps        |                         |            |
| Ramp #1                                           | 230        | 0                       | 0%         |
| Ramp #2                                           | 240        | 0                       | 0%         |
| Ramp #3                                           | 480        | 1                       | 2%         |
| Ramp #4                                           | 660        | 0                       | 0%         |
| Ramp#5                                            | 160        | 5                       | 8%         |
| Ramp #6                                           | 420        | 40                      | 65%        |
| Ramp #7                                           | 810        | 10                      | 16%        |
| Ramp #8                                           | 500        | 1                       | 2%         |
| Ramp #9                                           | 350        | 4                       | 6%         |
| Ramp #10                                          | 270        | 1                       | 2%         |
| Total (Ramps)                                     | 4,120      | 62                      | 100%       |
| Mainline :                                        | Segments   |                         |            |
| West of Dartnall Rd                               | 510        | 15                      | 13%        |
| Between Dartnall Rd and Mud St.                   | 1,160      | 34                      | 30%        |
| Between Mud St. and 0.4 km South of Greenhill Ave | 2,130      | 58                      | 52%        |
| North 0.4 km South of Greenhill Ave               | 500        | 5                       | 4%         |
| Total (Mainline)                                  | 4,300      | 112                     | 100%       |

During the study period, no collisions were reported on Ramps 1, 2 and 4. Just one collision was reported on Ramps 3, 8 and 10. More than half of all the ramp collisions reported were reported on Ramp 6 (from Mud Street westbound to the Linc westbound).

For mainline, the segment that experienced the highest proportion of collisions (52%) was between Mud Street and 0.4 km South of Greenhill Avenue, which also represents the longest segment with a

CIMA+ // Partners in excellence

//

total length of 2.13 kilometres. The next highest segment was between Dartnall Road and Mud Street which experienced 30% of the mainline collisions.

### **Breakdown of Collisions**

The following collision pie charts for each road element in the study area are provided in this section and document the severity, impact type, lighting and road surface.

#### **COLLISION SEVERITY**

Figure 4 provides collision pie charts for each collision severity attribute (PDO, non-fatal injury and fatal).



Figure 4 - Collision Pie Charts - Severity

Only one fatal collision occurred during the study period. The fatal collision was observed on the mainline segment of the RHVP between Mud Street and 0.4 km South of Greenhill Avenue.

The overall proportion of non-fatal injury collision within the study area is 36%. For three of the mainline segments, the West of Dartnall Rd, RHVP between Dartnall Rd and Mud Street and RHVP between Mud Street and 0.4 km South of Greenhill Avenue, the proportion of non-fatal injury collision is higher than the study area average, with 40%, 44% and 40% respectively. While the mainline

B000



segments are all different lengths, the length of the section does not impact the proportion of collision severity. In other words, collisions along these three mainline segments are more likely to be severe than compared to other locations along RHVP.

#### **COLLISION IMPACT TYPE**

Figure 5 provides collision pie charts for each collision impact type attribute (single motor vehicle [SMV], side swipe, rear-end, overtaking, head-on, right-turn, pedestrian and other).



Figure 5 - Collision Pie Charts - Impact Type

The most common impact type observed within the study area is SMV, with an overall proportion of 64%. The proportion of SMV collisions on Ramp 6 is significantly higher than all other locations,

where more than 92.5% of collisions are SMVs. These findings are notable, especially when compared to the 2004-2011 Provincial average of SMV collisions occurring on ramps<sup>6</sup>, which is 57%

#### LIGHTING

Figure 6 provides collision pie charts for each collision impact type attribute (daylight and non-daylight), where non-daylight includes dusk/dawn as well as dark conditions.



Figure 6 - Collision Pie Charts - Lighting

The study area experienced an atypically high proportion of non-daylight collisions. In fact, according to the 2010 Ontario Road Safety Annual Report (ORSAR)<sup>7</sup>, less than 30% of all collisions in Ontario occurred during non-daylight conditions. By comparison, the proportion of non-daylight collisions

<sup>&</sup>lt;sup>6</sup> Ministry of Transportation of Ontario SafetyAnalyst project, CIMA. 2013.

Ontario Road Safety Annual Report (ORSAR), Ontario Ministry of Transportation, 2010

within the study area is 52% which is much higher than the provincial average, and higher than the average on all City of Hamilton roads, which is 36%. The road element within the study area that experienced the highest proportion of non-daylight collisions is Ramp 6, with a proportion of 73%.

#### **ROAD SURFACE**

Figure 7 provides the collision pie charts for collision road surface attribute (dry, snow/ice, wet and other).



Figure 7 - Collision Pie Charts - Road Surface

The study area overall average of collisions that occurred under wet road surface condition is 46%. When compared to the Provincial average of 17.4% and the City of Hamilton average of 13% the

// 1

<sup>8 2008-2010</sup> Traffic Safety Status Report, City of Hamilton, 2010

<sup>&</sup>lt;sup>9</sup> Ontario Road Safety Annual Report (ORSAR), Ontario Ministry of Transportation, 2010

proportion of collisions under wet road surface is significantly higher. This difference is mainly attributable to Ramp 6 and the mainline segment of RHVP between Mud Street and 0.4 km South of Greenhill Avenue, where the proportions of collisions that occurred under wet road surface conditions are 70% and 40%, respectively.

### **Findings Summary**

The following bullets summarize the most notable findings of the collision analysis:

- Among the ten ramps included in the study area, 65% of the ramp collisions were recorded on Ramp #6;
- The proportion of non-fatal injury collisions for the mainline segments between Dartnall Road and Mud Street and Mud Street and 0.4 km south of Greenhill Avenue is higher than the study area average;
- The most common impact type observed within the study area is SMV, with an overall proportion of 64%;
- ♣ The proportion of SMV collisions on Ramp 6 is more than 92.5%;
- The proportion of non-daylight conditions (52%), and the proportion of non-daylight collisions on Ramp 6 (73%) are much greater than the Provincial and City average proportions of collisions which are approximately 30% and 36%, respectively; and
- The proportion of collisions that occurred under wet road surface for Ramp 6 and the mainline segment of RHVP between Mud Street and 0.4 km South of Greenhill Avenue are 70% and 40%, respectively, which is much greater than the Provincial average of 17.4% and the City average of 13%.

# 4.2 Safety Analysis Using the Enhanced Interchange Safety Analyst Tool (ISATe)

# 4.2.1 Terminology: Observed, Predicted, and Expected Number of Collisions

The number of collisions that occur at a location is referred to the observed number of collisions. Since collisions have a highly random component, the observed collision data can vary greatly from year to year. If we had 50 years of collision data on a ramp, then the average number of collisions over the 50 years would be a very good estimate of the true safety of the ramp. This would only be the case if it was assumed that nothing changed over the 50 years including traffic volume, drivers (age, education, and experience), vehicles, the characteristics of the ramp itself, and the

//

<sup>&</sup>lt;sup>10</sup> 2008-2010 Traffic Safety Status Report, City of Hamilton, 2010

environment. Obviously it is not realistic to have available 50 years of collision data at a location and expect that traffic and conditions have not changed. Instead, a jurisdiction can utilize five years of recent collision data, assuming there have been no major geometric changes to calculate a collision average if there are sufficient numbers of sites for which the five year data is available. For example, if there are 50 ramps with similar characteristics along with their corresponding traffic volumes it would be possible to assess 5 years × 50 ramps = 250 years of data which can then be used to calculate an overall average number of collisions.

A Safety Performance Function (SPF) is a mathematical equation which describes the best fit relationship between the number of collisions on a road and the characteristics of the road where the characteristics can include traffic volume, road functional class, and environment type. SPFs are published in the literature or are developed by using all of the data from a jurisdiction to determine the best fit equation. By plugging key information into a SPF, one can then calculate what is referred to as the predicted number of collisions. The predicted number of collisions may be thought of as the average number of collisions of the particular type of entity with that particular traffic volume for a typical location.

The observed number of collisions provides site specific information, whereas the SPF provides overall average information. By combining the information from the observed and predicted number of collisions a better estimate of the true safety of a location can be determined. The empirical Bayes methodology combines observed collision data with the number of collisions predicted for similar sites. The combined number is known as the expected number of collisions. The expected number of collisions combines the observed number of collisions (obtained from the actual data) with the predicted number of collisions (obtained from the SPF for similar sites).

The expected number of collisions is estimated by using the empirical Bayes method to create a weighted combination of the actual number of collisions (obtained from the frequency data) and the predicted number of collisions (obtained from the SPF) as can be seen in **Figure 8**. A list of SPFs and calibration factors is included in **Appendix A**.

The empirical Bayes methodology is also used by the ISATe tool as described in the next section.

B000325





AADT
Figure 8 - Visual of Expected, Observed & Predicted Collisions & PSI

# 4.2.2 Methodology

ISATe<sup>11</sup> is an automated tool for assessing the safety of freeway facilities, including mainline sections and interchanges. This tool is intended to assist designers in making more informed decisions about the level of safety of design alternatives. Three main types of analysis can be performed using ISATe, including:

- Reconstruction Project Prioritization: to estimate the safety performance of a facility by determining its priority for reconstruction;
- System Safety Management: to evaluate the safety performance of several facilities and determine what countermeasures and where to implement them so that the greatest impact on safety is achieved; and
- Economic Analyst: to estimate the cost associated with the expected total number of collisions or to evaluate the safety benefits due to the number of collisions saved after the implementation of a countermeasure.

ISATe incorporates the safety prediction method which is included in Part C of the Highway Safety Manual (HSM). It uses a disaggregate safety evaluation approach. Freeway facilities are

B000325



<sup>&</sup>lt;sup>11</sup> Bonneson, J. A.; Pratt, M. P.; Geedipally, S.; Lord, D.; Neuman, T.; Moller, J. A. Enhanced Interchange Safety Analysis Tool: User Manual. National Cooperative Highway Research Program Project 17-45. 2012.

disaggregated into freeway mainline sections and/or interchanges, and an interchange subsequently disaggregated into ramps, collector-distributor (C-D) roads and crossroad terminals. Therefore, a safety analysis performed using ISATe can include the following basic roadway facility components:

- Freeway sections (with or without speed-change lanes);
- + Ramps or C-D roads; and,
- Crossroads ramp terminals.

Each component is further divided into segments or intersections as individual sites. The corresponding safety performance functions (SPFs) and collision modification factors (CMFs) are then used to evaluate the predicted average collision frequency at a site. The disaggregate approach also provides the ability to estimate the impacts on safety (collision frequency, type and severity) of modifying a specific geometric element (shoulder width, presence of a barrier, curve length, curve radius, speed-change lane, etc.).

The following provides a list of the different road characteristics that were to develop the SPFs available ISATe:

- + For freeway segments:
  - Site types: freeway segment, ramp-entrance speed-change lane, ramp-exit speed-change lane;
  - · Severity: fatal and injury, property damage only;
  - Area type: rural, urban;
  - Freeway through lanes: 4, 6, 8, 10; and
  - Collision type: multiple vehicle, single vehicle.
- ♣ For Ramps:
  - Site types: entrance ramp, exit ramp, C-D road;
  - Severity: fatal-and-injury (FI), property-damage-only (PDO);
  - Area type: rural and urban;
  - Ramp through lanes: 1 and 2; and
  - Collision type: multiple vehicle, single vehicle.

The CIMA team obtained all of the required input information and entered it into ISATe for the RHVP study area.

For ISATe, the corridor needed to be further segmented resulted in creating 15 freeway segments and 8 ramp segments.

#### **Limitations of ISATe**

The use of ISATe to conduct safety analysis has one significant limitation. The SPFs used in ISATe are not calibrated for the collision experience in Hamilton. Calibration ensures that the evaluation results are meaningful and accurate for a specific jurisdiction. The default SPFs found in ISATe is calibrated for the U.S. through NCHRP Project 17-45. Therefore, when one compares the observed

CIMA+ // Partners in excellence

// 1

number of collisions to the predicted number of collisions generated from ISATe, one is comparing local Hamilton data against the overall average number of collisions found at freeways and ramps in states in the U.S. This means that the output of ISATe is suitable only for relative rankings and not for absolute collision values. In other words, the location with the highest predicted number of collisions will most likely remain the highest compared to other RHVP locations even after recalibration (relative ranking). However, the number of calculated collisions will likely change after recalibration (absolute values).

There is insufficient data in the current study to calibrate the SPFs in ISATe for Hamilton. The ISATe User Manual states that for each site type there should be at least 100 collisions per year. For the RHVP study corridor there were only 160 total collisions for all site types spread over five years. In addition, generally many locations are needed for recalibration whereas this project covers only one highway.

### 4.2.3 ISATe Tool Results

ISATe was used to calculate the predicted and expected number of collisions as provided in **Table 6** for freeway segments (for both directions) and **Table 7** for ramp segments. In general, when the observed number of collisions is less than the predicted, then this is an indication that the location is performing better than average. When the observed number of collisions is greater than the predicted, this is an indication that the location is performing worse than average. The expected number of collisions is an empirical Bayes weighted average of the observed and predicted values. Therefore, the expected value is always a value in between the observed and predicted values.

Table 6 - Observed, predicted and expected number of collisions for the freeway segments

|                            |             |       | Fre         | eeway Se                      | gments       |      |            |            |           |          |
|----------------------------|-------------|-------|-------------|-------------------------------|--------------|------|------------|------------|-----------|----------|
|                            |             |       |             | Observed Number of Collisions |              |      |            |            |           |          |
| Name                       | Description | Lanes | Length (km) | Daylight                      | Non-Daylight | SMX  | Multi-Veh. | Total Obs. | Predicted | Expected |
| West of Dartnall           | Dartnall 1  | 4     | 0.24        | 1                             | 4            | 1    | 4          | 5          | 15.4      | 8.9      |
| Troot of During            | Dartnall 2  | 4     | 0.27        | 6                             | 4.           | . 5. | 5          | 10         | 17.1      | 12.5     |
|                            | Dartnall 3  | 4     | 0.16        | 3                             | 0            | 1    | 2          | 3          | 9.9       | 6.1      |
| Between Dartnall Rd and    | Dartnall 4  | 4     | 0.31        | 3                             | 3            | 4    | 2          | 6          | 30.9      | 14.0     |
| Mud St.                    | Dartnall 5  | 5     | 0.34        | 5                             | 5            | 5    | 5          | 10         | 22.3      | 12.8     |
|                            | Mud 1       | 5     | 0.35        | 6                             | 9            | 8    | 7          | 15         | 16.5      | 15.9     |
|                            | Mud 2       | 5     | 0.24        | 5                             | 1            | 5    | 1          | 6          | 8.0       | 7.3      |
|                            | Mud 3       | 5     | 0.19        | 2                             | 3            | 4    | 1          | 5          | 8.0       | 6.4      |
| Between Mud                | Mud 4       | 6     | 0.16        | 6                             | 6            | 6    | 6          | 12         | 6.6       | 8.9      |
| St, and 0.4 km<br>South of | Mud 5       | 6     | 0.10        | 4                             | 2            | 6    | 0          | 6          | 9.0       | 6.4      |
| Greenhill Ave              | Mud 6       | 5     | 0.34        | 4                             | 7            | 6    | 5          | 11         | 51.0      | 16.4     |
|                            | Greenhill 1 | 5     | 0.39        | 2                             | 3            | 1    | 4          | 5          | 26.4      | 13.7     |
|                            | Greenhill 2 | 5     | 0.71        | 4                             | 9            | 5    | 8          | 13         | 43.2      | 25.3     |
| North 0.4 km<br>South of   | Greenhill 3 | 5     | 0.16        | 1                             | 0            | 0    | 1          | 1          | 8.8       | 4.5      |
| Greenhill Ave              | Greenhill 4 | 4     | 0.34        | 4                             | 0            | 1    | 3          | 4          | 17.8      | 10.2     |

Table 7 - Observed, predicted and expected number of collisions for the ramp segments

|                |                                           |       |             | Ramp Seg                      | ments            |         |                |               |           |        |
|----------------|-------------------------------------------|-------|-------------|-------------------------------|------------------|---------|----------------|---------------|-----------|--------|
| <b>a</b>       | Name<br>Description                       | Ø     | Length (km) | Observed Number of Collisions |                  |         |                | pe            | D O       |        |
| Z<br>Z         |                                           | Lanes |             | Daylig<br>ht                  | Non-<br>Daylight | SM<br>V | Multi-<br>Veh. | Total<br>Obs. | Predicted | Expect |
|                | Ramp #1                                   | 1     | 0.23        | 0                             | 0                | 0       | 0              | 0             | 3.1       | 1.5    |
| Dartnall Int.  | Ramp #2                                   | 1     | 0.24        | 0                             | 0                | 0       | 0              | 0             | 1.8       | 1.3    |
| Daithail IIIt. | Ramp #3                                   | 1     | 0.48        | - 1                           | 0                | 1       | 0              | 1             | 40.1      | 7.6    |
|                | Ramp #4                                   | 1     | 0.66        | 0                             | 0                | 0       | 0              | 0             | 5.3       | 3.2    |
|                | Ramp #5                                   | 2     | 0.16        | 4                             | 1                | 2       | 3              | 5             | 2.0       | 2.6    |
|                | Ramp #6                                   | 1     | 0.42        | 11                            | 29               | 37      | 3              | 40            | 23.3      | 37.1   |
| Mud Int.       | Ramp #7a (from<br>Mud to end of S<br>bend | 1     | 0.60        | 2                             | 1                | 3       | 0              | 3             | 6.4       | 5.1    |
|                | Ramp #7b<br>(from S bend to<br>RHVP)      | 1     | 0.21        | 5                             | 2                | 6       | 1              | 7             | 1.9       | 3.7    |
|                | Ramp #8                                   | 2     | 0.50        | 0                             | 1                | 1       | 0              | 1             | 11.4      | 6.0    |
| Greenhill      | Ramp #9                                   | 1     | 0.35        | 3                             | 1                | 3       | 1              | 4             | 1.4       | 1.8    |
| Int.           | Ramp #10                                  | 1     | 0.27        | 1                             | 0                | 1       | 0              | 1             | 0.9       | 1.0    |

Overall the number of observed collisions is less than the predicted number of collisions, except for the following locations:

- + Freeway segment Mud 4; and
- \* Ramps 5, 6, 7b 9 and 10.

For example, for Ramp #5 there were 5 observed collisions, however the ISATe tool predicts there would be only 2 collisions.

\* ,

This difference between the expected and predicted number of collisions is referred to the as the potential for a safety improvement (PSI) and also referred to as the excess number of collisions in the Highway Safety Manual. In other words these locations stand out as performing worse than a typical location of the same facility type with similar traffic volume. These locations deserve special consideration since the number of collisions which have occurred is worse than average.

### 4.3 Traffic Operations

A high level review of traffic operations was undertaken for the study area. Highway Capacity Software (HCS) 2010 was utilized to examine the mainline and the ramps during the AM and PM peak periods. It was found that, generally, the study area operates well with most segments and ramps experiencing LOS "C" or better, although there are some exceptions. Figure 9 summarizes the LOS for the various elements for the AM and PM peak periods. Detailed outputs from HCS are included in Appendix B.



Figure 9 - Results of Operational Analysis for AM and PM Peak Periods - AM [PM]

#### 4.4 Illumination Review

# 4.4.1 Methodology

The understanding that the decision to not illuminate the entire RHVP section was inextricably linked to environmental concerns and approvals, therefore review of full illumination was not undertaken but restricted to spot locations (ramps). The primary objective of illumination is to increase safety by providing drivers with improved nighttime visibility of roadway conditions and potential hazards.



However, as noted, illumination of the mainline section of the RHVP was not examined for this study. This is because the illumination design choices that were made during the design phase were intimately linked to approvals. Reference materials note that, "The sole reason for making design changes was to reduce environmental impacts. 1912 The Valley section of the Parkway traverses the Niagara Escarpment, a UNESCO World Biosphere Reserve, designated for its unique landform characteristics and the presence of a provincial land use plan to guide development in its area. Because of this unique area, and because of the costs associated with building a roadway on the escarpment, the City identified several design refinements that included restricting illumination to intersections and on/off ramps. 13

Furthermore, while illumination may improve visibility at night, it may also create the situation where drivers' eyes must adjust back to darkness when leaving the illumination portion of the roadway. Therefore, the decision to provide roadway lighting should be looked at using sound criteria, but illumination decisions must also be done in the context of the surrounding roadway network. Given that environmental approvals for the roadway placed restrictions on illumination only ramps were examined for the potential installation of illumination as part of this study.

Another consideration is roadside safety. Luminaires must be installed in safe locations that recognize their potential hazard to vehicles. The location and placement of luminaires must also take into account the need for maintenance, meaning they must be accessible to workers.

Additional consideration must be given to other environmental factors as well, including "light pollution". Light pollution is can be a concern to residents living adjacent to a roadway facility. Roadway illuminating light may detract from the enjoyment of the nighttime setting and have negative effects on biological systems. Therefore, the reduction in light pollution is always a consideration in the installation of illumination in the proximity of residential lands.

In order to determine whether additional illumination should be considered for installation within the study area, the Transportation Association of Canada (TAC) Roadway Lighting Guide was used14. This policy is based on an analytical approach where several factors have been incorporated. The factors included in the warrants require the collection of the following types of data: geometric, operational, environmental, and collision data.

The guide differentiates the following four types of illumination: full lighting, partial interchange lighting, continuous lighting (not being examined as part of this study), and transition lighting.

<sup>&</sup>lt;sup>12</sup> Red Hill Valley Impact and Design Process, City of Hamilton, Page 3

<sup>&</sup>lt;sup>13</sup> Red Hill Valley Project Public Consultation Report, March 2003, Lura Consulting, Page 136 <sup>14</sup> Guide for the Design of Roadway Lighting, Transportation Association of Canada (TAC), 2006

Full lighting refers to lighting of the entire width within a defined area in a uniform manner, beginning at the start of the warranted area and ending where lighting is no longer warranted.

#### Partial Interchange Lighting

Refers to lighting at decision points where identification is required, typically at on-ramps and offramps. Few luminaires are needed for partial interchange lighting than for full lighting.

#### Transition Lighting

Refers to lighting at locations where a continuously lighted roadway tapers to fewer lanes, or locations where the continuous lighting ends and the road continues. This type of lighting assists the road users to adapt from a lighted area to an unlighted area.

#### Warrants

The determination of the need for illumination on freeway interchanges and freeways is performed through the use of warrants. Based on the factors included in the warrants, a rating of between 1 and 5 is assigned depending on the conditions encountered. The higher the rating, greater the hazard and the more critical is the need for illumination. To each factor a weight is also attributed, to indicate its relative importance. When factors vary within the portion of roadway for which the warrant is being undertaken, the worst case rating is recommended for the entire segment.

The forms used to determine the lighting need for freeway interchange (mainline interchange segments) and freeway (mainline segments) are provided in **Appendix C**.

Full lighting is warranted when a total point score of 60 or more is achieved, or when the night-to-day collision ratio is 2:1 or greater (which is not the case for the study area – night-to-day collision ratio is 1.10:1).

#### 4.4.2 Illumination Results

The full illumination justification analysis was carried out for the ramps that make up the three interchanges; Dartnall Road, Mud Street and Greenhill Avenue. The two factors included in the warrants with the highest weights are the proportion of night collisions and the presence of curves, followed by the night-time operational Level of Service.

The following was found:

- Illumination of the ramps at the Dartnall Road interchange was not warranted;
- Illumination of the ramps at the Mud Street interchange was warranted; and
- Illumination of the ramps at the Greenhill Avenue interchange was not warranted.

Based on the TAC warrant, illumination of ramps at the Mud Street interchange is warranted.

However, it must be noted that the achievement of a warrant does not automatically mean that illumination must be installed. All illumination must be assessed in relation to the environmental approval constraints which exist, as well as cost of installation and maintenance implications.



Therefore, the decision to provide roadway lighting should be looked at using sound criteria, but illumination decisions must also be done in the context of the surrounding roadway network and a benefit-cost analysis.

# 4.5 Field Investigation and Human Factors Assessment

### 4.5.1 Methodology

The daytime field investigation took place on Tuesday, May 14, 2013, during morning peak and off-peak periods (07:00 a.m. - 12:00 p.m.) and during the afternoon peak (4:30 p.m. - 6:00 p.m.). At the time of the investigation the weather was cool and cloudy with no precipitation. One nighttime site investigation was also conducted during the early morning hours of Tuesday, May 14, 2013 during dark lighting conditions. At the time of the investigation the weather was cool, cloudy, with no precipitation.

High Definition video and a picture inventory from the perspective of a driver, from each lane, was collected for each of the mainline and ramp sections. Stationary observations were also undertaken from four separate locations along the mainline; from the pedestrian bridge overpass between the Dartnall Road and Mud Street interchanges, from the Pritchard Road overpass, from the east end of Mud Street (Mountain Brow Boulevard - view of the Mud Street E-W on-ramp, and from the Greenhill Avenue overpass.

Our assessment included the identification of signing installations. While direct correlation could not be determined between specific sign installations and reported collisions, it is recognized that some identified installations could have been a contributing factor. Therefore, we have suggested some signage improvements that could assist in reducing the potential that the installations become a contributing factor in a collision.

# 4.5.2 Field Investigation Results – Overall Systematic Findings

This section describes systemic findings that were identified within the study area overall.

# Signage

The critical tasks that a road user must complete include collecting, understanding, making decisions about and reacting to information obtained from various sources, including regulatory, warning, information and guide signs. Therefore, it is critical that the information on signs can be well understood within the context of the surrounding roadway, which is a function of the travel speed, the legibility of the sign, background distractions and driver workload

Generally, it was found that the freeway signage follows OTM guidance for placement and message. However, in some instances it appears that there is more signing in place than what is required. It was also found that the positioning of some signs could be improved. In a few locations, including some where critical decisions are required to be made by drivers, signs are so closely spaced that they obscure each other and/or cannot be properly seen, read and/or comprehended.

3000325



#### TRAILBLAZER INFORMATION SIGN DISPLAYS

The primary purpose of a guide or information sign is to direct road users along a roadway. The trailblazer information sign displays for the RHVP and the Linc contain detailed information which can be challenging for an approaching road user to fully read. The displays contain varying, text sizes and information and functionally only serves as a logo, not a sign with a specific text message. Significant variation in the use of these signs, in conjunction with directional information leading to other highways (403 and QEW) were noted and can be seen in **Figure 10**.



Figure 10 - Trailblazer Information Sign Displays (Various Locations Leading to RHVP/Link On-Ramps)

#### LANE EXIT SIGNS

This sign is normally reserved for freeway mainlines to provide advance warning where an entire lane does not continue and exits from the one side of the road and leads to a different destination from that of the remaining lanes of the through roadway. This sign is inappropriately used in a few instances on ramps where the driver has already left the mainline. **Figure 11** provides an example of one such case.



Figure 11 - Lane Exit Warning Sign on Ramp (Off-Ramp to Stone Church Road)

# 4.5.3 Field Investigation Results – Location Specific Issues

This section describes issues identified throughout the study area by location.

,

#### **RHVP Southbound Mainline**

#### CLOSELY-SPACED SIGNAGE AND "SLOWER TRAFFIC KEEP RIGHT" SIGN AT DIVERGE POINT (MUD 5)

A group of closely-spaced signs exists immediately upstream of the Stone Church Road and Mud Street off-ramp. Given the amount of information in a short stretch of road and the fact that this is a critical decision point on the mainline, the message of each sign could be lost and could contribute to driver confusion. **Figure 12** shows the current situation. There is also a "SLOWER TRAFFIC KEEP RIGHT" sign installed at the beginning of the Stone Church Road / Mud Street diverge point where the right lane becomes a dedicated exit lane. This message may be confusing to road users, and could possibly lead to weaving conflicts. **Figure 13** shows the current situation.



Figure 12 - Closely-Spaced Signage Upstream of the Stone Church Road and Mud Street Off-Ramp (View South from the Mainline)



Figure 13 - "SLOWER TRAFFIC KEEP RIGHT" Sign Upstream of the Stone Church Road and Mud Street Off-Ramp (View South from the Mainline)

B000325

#### **OBSCURED FREEWAY EXIT SIGN (MUD 5)**

The Freeway Exit sign in the gore area of the Stone Church Road / Mud Street off-ramp is partially eclipsed by the Object Marker warning sign on approach. Figure 14 shows the current situation.



Figure 14 - Freeway Exit sign Partially Eclipsed by the Object Marker Warning Sign (View South from the Mainline)

#### CHANGE IN ALIGNMENT THROUGH MAINLINE CURVE (DARTNALL 5)

On the southbound mainline alignment changes through the horizontal curve just south of the Pritchard Road overpass, part-way through the horizontal curve, there is a tangent section, and then the curve continues. The change is very noticeable when viewed from the Pritchard Road overpass. **Figure 15** shows this issue.



Figure 15 - View of Change in Horizontal Curve on the Mainline (View West from Pritchard Road Overpass)

Many drivers were observed traversing or closely approaching the inside (median) edge line of the highway. Some vehicles were observed driving over the rumble strips and then overcorrecting to



position themselves back into their travel lane. Overcorrection actions were observed less often during the peak hours, possibly due to lower speeds. Figure 16 provides examples of this case.



Figure 16 - Observed Cases of Swerve- and Overcorrection-Manoeuvers (View West from Pritchard Road Overpass)

In the figure, the photos illustrate drivers approaching the edge lines (emphasized with the redcoloured arrow). The picture on the right illustrates the overcorrection manoeuver made by the driver in the garbage truck in the center lane of the mainline. Subsequent to the initial correction manoeuver and as a result of overcorrection, the driver had veered closer to the outside of the lane (emphasized with the orange-coloured arrow). It is important to note that no collisions were able to be directly attributed to this issue. The condition is not present in the northbound lanes.

#### **RHVP Northbound Mainline**

#### **OBSCURED INFORMATION SIGN (DARTNALL 4)**

The information sign for Stone Church Road / Mud Street located approximately 500 metres upstream of the Stone Church Road / Mud Street off-ramp is marginally eclipsed by the Deer Crossing warning sign immediately in advance. Figure 17 shows the current situation.



Figure 17 - Deer Crossing Warning Sign Obscuring Information Sign (View North from the Mainline)

#### POTENTIALLY RESTRICTED SIGHTLINES FOR MERGING TRAFFIC (DARTNALL 4)

The on-ramp merge lane is located within a horizontal curve in the mainline. Vehicles northbound on the mainline and upstream of the ramp may not be easily visible from the vantage point of a merging driver given the curvature of the road and the angle of approach which creates a large blind spot. Perhaps because of this large blind spot, many drivers were observed merging onto the mainline immediately downstream of the gore area despite the long acceleration lane available, and even when adequate gaps were not available. These actions could lead to sideswipe collisions, rear-end collisions or SMV collisions if evasive manoeuvres are undertaken by either or both drivers. Figure 18 provides an example.



Figure 18 - Potentially Restricted Sightlines for Merging Traffic

#### UNEVEN TERRAIN IN FRONT OF GUIDE RAIL (MUD 1)

The terrain is uneven immediately in front of the steel beam guide rail system in the median downstream of the Stone Church Road / Mud Street diverge point. The purpose of the guide rail system is to shield arrant vehicles from the columns of the Stone Church Road / Mud Street overpass structure. If an errant vehicle were to run off the road in this location, they would ride up on the uneven grassy terrain in front of the barrier causing the vehicle to strike the system at a higher

CIMA+ // Partners in excellence

point than it is designed for. This could lead to the overturning of a vehicle, and possibly continuation into the column being shielded. **Figure 19** shows the current situation.



Figure 19 - Uneven Terrain Immediately In Front of the Steel Beam Guide Rail System (View North from the Mainline)

#### **CLOSELY SPACED SIGNAGE (MUD 5)**

A "PLEASE AVOID USE OF ENGINE BRAKES" advisory sign located downstream of the Mud Street on-ramp between a Lane Drop and Bridge Ices warning sign. These signs are closely spaced and within the vicinity of a complex merging area where drivers from Mud Street are required to perform two consecutive merging maneuvers; one from the Stone Church on-ramp and then another onto the mainline of the RHVP. Given the nature of the location, the warning signs are the highest priority and require the immediate attention of drivers. In its current configuration, the signage in this area could potentially lead to driver information overload and possible conflicts. **Figure 20** shows the current situation.



Figure 20 - Closely Spaced Signs within the Vicinity of a Complex Merging Area (View North from the Mainline)

## Dartnall Road S-E On-Ramp (Ramp 2)

#### CULVERT WITHIN DEFLECTION AREA OF APPROACH ECCENTRIC LOADER END TREATMENT

The culvert and drop-off adjacent to the guide rail system at the beginning of the Dartnall Road onramp is within the run-out area of the Eccentric Loader approach end treatment. If the end treatment is stuck, it is possible that the vehicle will also come into contact with the culvert and/or descend into the ditch. **Figure 21** shows the current situation.



Figure 21 – Culvert and Ditch within Deflection Area of Approach Eccentric Loader End Treatment (View North from Beginning of Off-Ramp)

# Mud Street W-E Off-Ramp (Ramp 5)

The outside (right) lane ends within the horizontal curve downstream of the mainline. The taper ending the lane occurs within the curve, forcing traffic to merge within the curve which requires a

CIMA+ // Partners in excellence

driver to perform two workload intensive maneuvers at the same time. Contributing to this, the overhead sign located at the diverge point (and just prior to the lane ends sign for the right lane) indicates that there are two lanes destined for Mud Street. This could contribute to the potential for a collision. Figure 22 shows the current situation.



Figure 22 - Outside Lane Ends within Horizontal Curve

### Mud Street E-W On-Ramp (Ramp 6)

#### **CLOSELY-SPACED AND ECLIPSING SIGNAGE**

A group of closely-spaced signage exists in the ramp gore area (near Winterberry Drive). Many of the signs eclipse each other on approach, most notably the information sign for the Linc and the Lane Drop warning sign are not clearly visible to drivers but provide valuable information that needs to be legible. **Figure 23** shows this signage configuration from two vantage points.



Figure 23 - Closely-Spaced and Eclipsing Signage (View West from Beginning of On-Ramps)

#### **EVIDENCE OF LANE DEPARTURES**

Evidence of vehicles departing the travel lane was identified on the outside of the ramp. **Figure 24** provides examples.



Figure 24 - Evidence of Lane Departures

# Mud Street E-N On-Ramp (Ramp 7a)

#### CLOSELY-SPACED AND "BACK-DROPPED" SIGNAGE

As noted for the Mud Street E-W on-ramp, a group of closely-spaced signage exists in the ramp gore area. The 40 km/h advisory signage for this ramp is placed amongst signage for the Mud Street E-W on-ramp and is easily lost in the jumble. Although sign-eclipsing isn't an issue here, the signs are back-dropped by the information sign for the Linc. Also, the Lane Ends warning sign for the Mud

back-dropped



Street E-W on-ramp is located between the Freeway Exit sign and the Mud Street E-W on-ramp information sign, which could cause further confusion. The previous **Figure 24** shows the current situation.

#### INAPPROPRIATE WARNING SIGN FOR CONFIGURATION

The Merge warning sign on approach to the Stone Church Road East S-N on-ramp is inappropriate for the configuration. The driver on the E-N ramp is the one who is merging onto the S-N ramp. This sign indicates that another lane is joining from the right and could cause driver confusion. A Lane Ends warning sign is required, as opposed to the Merge warning sign. **Figure 25** shows the current situation.



Figure 25 - Inappropriate Merge Warning Sign (View North from On-Ramp)

## Stone Church Road East N-S Off-Ramp & Mud Street N-E Off-Ramp (Ramp 8)

#### LOCATION OF INFORMATION SIGNS

The information and lane designation signs at the diverge point from RHVP indicates both ramp lanes to lead to Mud Street and Stone Church Road. Small information signs indicating that the left lane leads to Mud Street and the right lane leads to Stone Church Road are located approximately 160 metres upstream of the forced diverge point for Mud Street and Stone Church Road, are directly behind curve warning signs and immediately before a curve. Since the information signs are small there is a good chance that a driver will not detect them. Also, due to the horizontal curvature of the ramp, the signs are not visible very far in advance (they fall outside the driver's cone of vision through the curve), and as a result, sudden lane changes and potentially related conflicts, may occur in this area.

If the small information signs are missed the next available signage to inform road users of the appropriate lane decision are located at the diverge point. However, similar to the previous information signs, given the horizontal curvature of the ramp, the signs are not visible in advance of their placement and sudden lane changes, and potentially related conflicts, may occur in this area. Figure 26 shows the current situation of the drivers' approach to the diverge area.



Figure 26 - Information Signs Leading to Mud Street and Stone Church Road (View South Successively Traveling South)

#### INCONSISTENT CURVE WARNING SIGNS ON THE RAMP

The curve warning signs on either side of the road on the off-ramp provide inconsistent information regarding the severity of the curve. It is important that consistent and appropriate warning the severity of a curve be provided to a driver in order to assist them in making the appropriate decisions to safety navigate through the curve. **Figure 27** shows the current situation.

Figure 27 - Conflicting Curve Warning Signs on the Ramp

# 5. Summary of Findings

This section summarizes the findings from the collision, ISATe and field reviews. Where possible, road sections have been grouped by similar characteristics and findings, similar to the more aggregated sections shown in **Figure 3** earlier in the report.

Overall, it was found that the RHVP is operating safely with the calculated expected number of collisions being lower than the predicted number of collisions for a roadway with similar characteristics in most segments. During the study period, no collisions were reported on Ramps 2, 3 and 4, and just two collisions were reported on Ramp 8 and one collision on Ramp 10. However, it is important to note that half of the ramps collisions were reported on Ramp 6 (from Mud Street westbound to the Linc westbound).

For mainline, the segment that experienced the highest proportion of collisions (43%) was between Mud Street and 0.4 km South of Greenhill Avenue, which also represents the longest segment with a total length of 1.5 kilometres. The next highest segment was between Dartnall Road and Mud Street which experienced 28% of the mainline collisions.

The output of the ISATe tool indicated that freeway segment Mud 4 and ramps 5, 6, 7b 9 and 10 have an excess number of collisions as indicated by a positive difference between the expected and predicted number of collisions. This is indicative of a potential for a safety improvement (PSI). In other words, these locations stand out as performing worse than a typical location of the same facility type with similar traffic volume.

It is also noteworthy that the collisions that are occurring on the RHVP show an atypically high proportion of SMV, wet road surface and non-daylight collisions when compared to the Provincial and City of Hamilton averages.

The TAC illumination warrants were examined as part of this study and it was determined that the Mud Street interchange would meet the justification for interchange illumination, although only by a small margin. However, just because a warrant has been achieved does not mean that illumination must or can be implemented. Environmental constraints and approvals must be considered before pursing the recommendation to illuminate.

Table 8 summarizes the road segment findings and Table 9 summarizes the ramp findings.

Table 8 - Summary of Road Segment Findings

|                           | Road                |      |       | Collis | sions                                                                                                                                   | Field                                                                                                                                                                                                                                  |
|---------------------------|---------------------|------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                      | Segment             | Obs. | Pred. | Exp.   | Pattern                                                                                                                                 | The tu                                                                                                                                                                                                                                 |
| West of<br>Dartnall       | Dartnall<br>1 & 2   | 15   | 32.5  | 21.4   | → None                                                                                                                                  | ◆ No major findings                                                                                                                                                                                                                    |
| Between Dartnall &<br>Mud | Dartnall<br>3,4 & 5 | 19   | 63.1  | 32.8   | → 48% SMV                                                                                                                               | Potentially restricted sightlines for merging traffic from Dartnall onto NB RHVP Placement of exit information sign potentially confusing NB RHVP Exit information sign partially obscured NB RHVP Change in alignment in SB direction |
|                           | Mud<br>1, 2 & 3     | 26   | 32.5  | 29.6   | <ul><li>◆ 60% SMV</li><li>◆ 50% non-daylight</li></ul>                                                                                  | <ul> <li>Unshielded hazard SB</li> <li>Uneven terrain in front of guiderail NB</li> </ul>                                                                                                                                              |
| Between Mud & Greenhill   | Mud<br>4,586        | 29   | 66.6  | 31.6   | <ul> <li>Exp. &gt;. Pred. @</li> <li>Mud 4</li> <li>Primarily SMV</li> <li>High proportion of non-daylight &amp; wet surface</li> </ul> | Closely spaced & obscured signage at critical decision points NB & SB     Potentially confusing "keep right" sign SB                                                                                                                   |
|                           | Greenhill 1<br>to 4 | 23   | 96.2  | 53.8   | ◆ None                                                                                                                                  | No major findings                                                                                                                                                                                                                      |

Table 9 - Summary of Ramp Findings

| - e T          |                 |      |       |        | 18° " 2 8                                                                                                                                               | £ = " x                                                                                                      |
|----------------|-----------------|------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Name           | Ramp            |      |       | Collis |                                                                                                                                                         | Field                                                                                                        |
|                | Ramp<br>1&2     | Obs. | Pred. | Exp.   | Pattern<br>→ n/a                                                                                                                                        | Culvert within deflection area of approach eccentric loader end treatment (Ramp 2)                           |
| Greenhill Int. | Ramp<br>3       | 1    | 40.1  | 7.6    | + n/a                                                                                                                                                   | → No major findings                                                                                          |
|                | Ramp<br>4       | n/a  | n/a   | n/a    | ◆ n/a                                                                                                                                                   | ◆ No major findings                                                                                          |
|                | Ramp            | 5    | 2.0   | 2.6    | <b>+</b> n/a                                                                                                                                            | <ul> <li>Lane ends within curve</li> </ul>                                                                   |
| Mud Int.       | Ramp<br>6       | 40   | 23.3  | 37.1   | <ul> <li>Exp. &gt; Pred.</li> <li>65% of all ramp collisions</li> <li>High proportion &amp; frequency of SMV, non-daylight &amp; wet surface</li> </ul> | <ul> <li>Closely spaced / eclipsing signage at diverge point</li> <li>Evidence of lane departures</li> </ul> |
| 2              | Ramp<br>7a 7 7b | 10   | 8.3   | 8.8    | <ul> <li>Exp. &gt; Pred.</li> <li>80% of collisions<br/>SMV</li> <li>High proportion of<br/>non-daylight &amp;<br/>wet surface</li> </ul>               | Closely spaced & back dropped signage     at diverge     Inappropriate merge sign                            |
|                | Ramp<br>8       | 1    | 0.9   | 1      | → Exp. > Pred.,<br>however very<br>low # of<br>collisions                                                                                               | <ul> <li>Location and size of information signs</li> <li>Inconsistent curve warning signs</li> </ul>         |

# 6. Potential Countermeasures and Benefit-Cost Analysis

A list of potential countermeasures was developed to address the issues that were found in the previous sections. In keeping within the limitations of this study, the countermeasures that were developed do not propose to alter the geometry of the mainline or ramps on the RHVP.

In order to assist in determining the effectiveness of a countermeasure, collision modification factors (CMFs) were utilized where available. CMFs were examined from a number of sources including the HSM, the FHWA CMF Clearinghouse<sup>15</sup> and the MTO SafetyAnalyst project. The CMF of a countermeasure can assist in determining safety benefits of the countermeasure over the analysis period by calculating the expected number of collisions reduced. There are a number of countermeasures for which CMFs were not available. The CMF values are applicable to all collision types that occur at a site, unless the CMF is specific to the related collision impact type(s) (e.g., single-vehicle collision with fixed object).

The Benefit-Cost (B/C) ratio is the ratio of the present value of the safety benefit of a given countermeasure calculated for its service life to the present value of the cost of the countermeasure. A B/C ratio of greater than 1.0 represents an economically efficient countermeasure. In this criterion, the monetary value of the collisions reduced as a result of implementation of a countermeasure is considered as the benefit of the countermeasure. A comparison among the B/C ratios of the alternative countermeasures proposed for a site leads to the most economically efficient countermeasure. The alternative countermeasure with a higher B/C is considered as the preferred alternative. For the purposes of calculating the societal costs of collisions, MTO costs were utilized and projected to 2013 dollars. The resultant costs are summarized in Table 10. Details of the B/C analysis are included in Appendix D.

// 3

<sup>15</sup> http://www.cmfclearinghouse.org/

Table 10 - Annual Societal Costs of Collisions (inflated from 2004)

| Severity of Collision | 2013 Societal Cost | Proportion of Collisions |
|-----------------------|--------------------|--------------------------|
| Fatal                 | \$1,308,127        | 0.5%                     |
| Injury                | \$31,599           | 34%                      |
| PDO                   | \$9,654            | 65.5%                    |

The costs for the various countermeasures are meant to be high-level estimates and represent typical industry standard costs, where available, meaning that actual costs may vary from those noted in this report. The purpose of these costs is to provide the City a good basis upon which plans for implementing the various countermeasures could be made.

#### 6.1 General Pavement Friction

### 6.1.1 Perform Friction Testing

Pavement friction plays a vital role in keeping vehicles on the road by enabling the drivers to control/maneuver the vehicle in a safe manner (in both the longitudinal and lateral directions). Several methods and devices are available for measuring pavement frictional characteristics. Pavement surface texture is influenced by many factors, including aggregate type and size, mixture proportions, and texture orientation and details. Texture is defined by two levels: microtexture and macrotexture. Currently, there are no direct means for measuring microtexture in the field. However because microtexture is related to low slip speed friction, it can be estimated using a surrogate device. Macrotexture is characterized by the mean texture depth and the mean profile depth; several types of equipment are available for measuring these indices. Because of the high proportion of wet surface condition and SMV collisions, the City could consider undertaking pavement friction testing on the asphalt to get a baseline friction coefficient for which to compare to design specifications.

#### Cost-Benefit Ratio

The costs to undertake these tests are not expected to exceed \$20,000. Based on the results, the City may be in a better position to determine if further action is required.

### 6.2 Overall Study Area Countermeasures

The following potential countermeasures should be installed as an overall measure due to the need to create consistency throughout the RHVP.

#### 6.2.1 Permanent Raised Pavement Markings (PRPM)

PRPMs are delineation devices that are often used to improve preview distances and guidance for drivers in inclement weather and low-light conditions. Given the wet roadway condition and non-daylight trend in collisions along the RHVP, combined with the curvilinear geometry of the roadway,

PRPMs have the potential to positively affect the collision experience on the roadway as well as increase driver security.

#### **Benefit-Cost Ratio**

The CMF used for this assessment was 0.94 and is related to all collision types. The calculated benefit would be a reduction of 10.2 collisions over a five-year period. The expected service life for this countermeasure is 5 years, for a total benefit of \$245,593. The costs associated with this countermeasure are expected to be \$74,700. The B/C ratio is expected to be 3.29.

### 6.2.2 High Visibility Inverted Profile Pavement Markings

Conventional traffic striping materials are coated with a surface layer of glass beads. These beads reflect light from the vehicle's headlights back to the driver's eyes providing enhanced visibility of the lines in the dark. However, when conventional flat lanes are wet, the glass beads may become coated with water which may reduce the lines' ability to reflect light back to the driver. The high visibility inverted profile pavement markers have inverted profiles into the marking. The tiny profiles form small ridges which assist in draining water away from the marking. This helps to reduce the chances of the glass beads becoming covered with water allowing then to continue to reflect light, increasing the visibility of the markings during rain events.

This countermeasure would be an alternative to PRPMs. It is also important to understand that this countermeasure must be installed in a ground-out portion of asphalt in order to be snow plough-able.

#### **Benefit-Cost Ratio**

There is no specific CMF for this countermeasure, however, in generally, increasing the retro reflectivity of lanes lines increases their visibility which can improve the drivers' ability to stay within the lane as well as increase the drivers' preview distance of the road ahead. This can assist in reducing crashing and increasing driver security.

# 6.2.3 Wide Pavement Markings (102 mm to 150 mm)

Wide pavement markings can be used to improve preview distances and guidance for drivers in inclement weather and low-light conditions. Given the wet roadway condition and non-daylight trend in collisions along the RHVP, combined with the curvilinear geometry of the roadway, wide pavement markings have the potential to positively affect the collision experience on the roadway as well as increase driver security.

#### **Benefit-Cost Ratio**

The CMF used for this assessment was 0.96 and is related to fatal and injury collision types. The calculated benefit would be a reduction of 2.6 collisions over a five-year period. The expected service life for this countermeasure is 5 years, for a total benefit of \$135,537. The costs associated with this countermeasure are expected to be \$40,000. The B/C ratio is expected to be 3.39.

0000325

# 6.2.4 Install Wc-105 Slippery When Wet Signs

The purpose for the Slippery When Wet sign is to advise drivers that the surface of the roadway has a significantly reduced wet weather skid resistance. Competent drivers are aware that the friction of the road surface is reduced in wet weather; therefore this sign is reserved for use where the skid resistance of the road is reduced to an expectantly low level. Given the high proportion of wet surface collisions, it may be determined through friction testing that the skid resistance of the roadway surface is lower than normally encountered in some areas. If this is determined, the City could examine the installation of the Wc-105 sign for the northbound and southbound directions in relation to any areas identified through friction testing.

### Cost-Benefit Ratio

There is no specific CMF for the installation of these signs. However the costs to install signs are not likely to exceed \$5,000.

# 6.2.5 Enforcement of Travel Speeds

The exact relation between speed and crashes depends on many factors. However, in a general sense the relation is very clear: if on a road the driven speeds become higher, the crash rate will also increase. Therefore, targeted enforcement of known high crash areas can be an effective means to reduce the crash rate.

### **Benefit-Cost Ratio**

There is no CMF or cost for this countermeasure. Speed enforcement is a regular activity undertaken by the Police, therefore targeting specific areas should not increase costs. The City could consider approaching the Police to determine if there are areas where speed enforcement activities could be undertaken.

## 6.2.6 Rationalization of Trailblazer Signs

The trailblazer information sign displays for the RHVP and the Linc contain a lot of information for an approaching road user to read, process, and make an appropriate decision. The displays contain varying text sizes and information. Each display contains a number of individual pieces of information, and in some, a number of different physical signs. The City could examine increasing the font size of the pertinent information on the trailblazer signs and possibly adding the QEW and 403 signs to each of the markers to assist unfamiliar drivers to determine if they should be taking the RHVP or the Linc to reach their intended destination.

### **Benefit-Cost Ratio**

These trailblazer signs cannot be directly linked to any specific collisions, nor is there a corresponding CMF. However, the costs to replace or add signs would not be expected to exceed \$2,000, and because they are not on the mainline, special traffic protection would not be required to install the signs.

//

CIMA+ // Partners in excellence

The Lane Exits sign exists in several locations on ramps where its use is not intended. The City could examine the potential to remove these signs.

### Cost-Benefit Ratio

These Lane Exists signs cannot be directly linked to any specific collisions, nor is there a corresponding CMF. However, the costs to remove the sign would not be expected to exceed \$1,000, and because they are not on the mainline, special traffic protection would not be required to install the signs.

## 6.3 Site Specific Countermeasures

## 6.3.1 Dartnall Segments 1 & 2

There was no major collision or field findings in this segment.

## 6.3.2 Dartnall Segments 3, 4 & 5

The main collision finding through these segments was the high proportion SMV type collisions, at 48%, as well as a significant number of wet road condition collisions. In the field, sightline challenges as well as the placement of several signs were the primary findings, as well as the alignment discontinuity in the southbound mainline. The following improvements could be considered for implementation.

# Extend Solid White Line from Gore Area on Dartnall S-E Ramp

Due to the angle of approach between the northbound mainline drivers and the drivers merging from the Dartnall Road S-E ramp, it can be challenging for the merging drivers to properly detect a safe gap in traffic. It was observed in the field that drivers tended to enter the through lane abruptly at the beginning of the broken line. If the solid line were extended further from the gore area, it would encourage drivers to utilize more of the speed change lane, which would have the effect of bringing their speed up more in line with the through vehicles (reducing the speed variance), as well as improving their chances of detecting a safe gap in traffic in which to merge.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however the costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

# Remove Deer Warning Sign

The Stone Church Road / Mud Street exit information sign located within the taper for the Dartnall S-E on-ramp is partially obscured by a Deer Warning sign. The City could consider removing (there were no animal related collisions in five years) the Deer Warning sign.

CIMA+ // Partners in excellence

41

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however the costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

## Correct Change in Alignment in Southbound Direction

In the southbound direction there is a change in alignment that occurs wherein there is a tangent section of roadway between two curves, but within an intended smooth curve. We are unsure why the roadway was built this way as the design drawings do not show this occurring. It is difficult to attribute any collisions to this geometric aspect, however, it is clear that it catches drivers off-guard and leads to wandering in the lanes. The City could consider smoothing out the alignment through the use of pavement markings by shifting the flat area by approximately 1.6 metres, as shown in Figure 28. This would allow the outside yellow line to fall within the existing roadway platform, although it would be on the current paved shoulder and would require filling and regrinding of the existing edge line rumble strips. Final recommendations for this countermeasure would require additional examination of the road design that was not possible with the data provided for this study.



Figure 28 - Potential Pavement Marking Adjustment

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$4,000.

## 6.3.3 Mud Segments 1, 2 & 3

The main collision finding through these segments was the high proportion SMV type collisions as well as non-daylight collisions. The field investigation revealed minor deficiencies relating primarily to a guiderail installation in the northbound direction.

# Flatten Slope or Raise Guiderail in Northbound Direction

In the northbound direction within the median downstream of the Stone Church Road / Mud Street diverge point there is a guiderail system with a mound of terrain immediately adjacent to the front of the system. If an errant vehicle were to run off the road in this location, they would ride up on the uneven grassy terrain in front of the barrier causing the vehicle to strike the system at a higher point

//

CIMA+ // Partners in excellence

than it is designed for. This could lead to the overturning of a vehicle, and possibly continuation into the column being shielded. The City could examine the possibility to either lower the terrain or raise the guiderail system.

#### **COST-BENEFIT RATIO**

There have not been any collisions associated with this guiderail, nor are there any CMFs directly related to regarding the terrain adjacent to a guiderail. However, this could be considered maintenance of the system and the costs are expected to be low.

## 6.3.4 Mud Segments 4, 5 & 6

Similar to other segments, the main collision finding through these segments was the high proportion SMV type as well as wet surface and non-daylight collisions. Of additional note, the segment Mud 4 shows a positive PSI. The field review found issues with closely spaced and potentially confusing signage installations.

## Relocate "ENGINE BRAKES" Sign (Northbound)

A "PLEASE AVOID USE OF ENGINE BRAKES" advisory sign located downstream of the Mud Street on-ramp between a Lane Drop and Bridge Ices warning sign. These signs are closely spaced and within the vicinity of a complex merging area where drivers from Mud Street are required to perform two consecutive merging maneuvers. Given the nature of the location, the warning signs are the highest priority and require the immediate attention of drivers. In its current configuration, the signage in this area could potentially lead to driver-overload and possible conflicts. The City could consider relocating the "ENGINE BRAKES" sign further north beyond the end of the taper.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

# Remove "Slower Traffic Keep Right" Sign at Stone Church / Mud Diverge (Southbound)

There are a number of Slower Traffic Keep Right signs in the northbound direction through the study area. While this is generally good advice, there is one sign posted immediately before the Stone Church Road / Mud Street diverge point where the right lane becomes a dedicated exit lane for the freeway exit. Providing this message at this point may be confusing to road users, and could possibly lead to weaving conflicts. This sign is also part of a group of closely spaced signs in the area. The City could consider removing the sign located immediately upstream of the Stone Church Road / Mud Street diverge.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

CIMA+ // Partners in excellence



## Relocate Object Marker Sign (Southbound)

The Freeway Exit sign in the gore area of the Stone Church Road / Mud Street off-ramp is partially eclipsed by the Object Marker warning sign on approach. The City could consider relocating the object marker sign to the post of the exit sign.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

## 6.3.5 Greenhill Segments 1 to 4

There was no major collision or field findings in this segment.

## 6.3.6 Ramps 1 & 2

There were no major collision findings for these ramps, however, during the field review it was noted that there are a couple of minor issues with roadside elements.

## Redesign End Treatment on Guiderail (Ramp 2)

The culvert and drop-off adjacent to the guide rail system at the beginning of the Dartnall Road onramp is within the run-out area of the Eccentric Loader approach end treatment. If the end treatment is struck, it is possible that the vehicle will also come into contact with the culvert and/or the ditch. An extruder end treatment demands less adjacent deflection area upon impact than the Eccentric Loader, preventing an impacted vehicle from traveling through the breakaway area of the system. The City could consider replacing the eccentric loader with an extruder end treatment.

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$11,000.

### 6.3.7 Ramps 3 & 4

There was no major collision or field findings for these ramps.

### 6.3.8 Ramp 5

There were no major collision findings for this ramp; however the following items were noted.

### Illumination

The outcome of the TAC illumination warrant indicated that illumination of the ramp is justified, however it is not being recommended at this time as the cost to install and maintain the illumination is much greater than the calculated benefit.

ROOO325

#### **COST-BENEFIT RATIO**

The CMF used for this assessment was 0.6 and is related to all types of nighttime collisions. The expected service life for this countermeasure is 20 years. A total benefit of \$19,954 and costs of \$275,000 for a B/C ratio of 0.07 was calculated.

## **Revise Pavement Markings for Ramps**

It was found during the field investigation that the two lane off-ramp diverges into one lane for Stone Church Road and two lanes that merge to one lane for Mud Street. This merge on the Mud Street section of the ramp occurs within a curve immediately downstream of the diverge point of the ramps. The City could consider restriping the entire ramp to have one lane exit to Stone Church Road and one lane exit to Mud Street thereby eliminating the need for the merge on the curve on approach to Mud Street. The overhead sign for Mud Street would also need to be revised to indicate only one lane is destined to Mud Street.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$8,000.

## 6.3.9 Ramp 6

This ramp was found to be the poorest performing segment of the RHVP that was reviewed for this assignment and was noted as having a positive PSI. This ramp has experienced 65% of all collisions occurring on ramps, and like other areas, has a high proportion of SMV, wet surface and non-daylight collisions. The field review noted evidence of run off the road collisions, as well as some closely spaced and eclipsing signage at the diverge point from Ramp 7a.

The City has installed improved signage on the ramp in the recent past. Because this signage was installed after the period for which collisions were available for this review, any effect that this improved signage may have on collisions on the ramp cannot be quantified in this review.

### Illumination

The outcome of the TAC illumination warrant indicated that illumination of the ramp is justified. Illumination increases a drivers' preview area and increases safety by providing drivers with improved nighttime visibility of roadway conditions and potential hazards. However, intermittent installation of illumination should be avoided as it creates dark spots that require drivers' eyes to readjust to the low-light levels, temporarily reducing their visibility even further, therefore installation of illumination on Ramp 5 should be considered in context with the surrounding roadway network.

#### **COST-BENEFIT RATIO**

The CMF used for this assessment was 0.6 and is related to all types of nighttime collisions. The expected service life for this countermeasure is 20 years. A total benefit of \$1,040,193 and costs of \$275,000 for a B/C ratio of 3.78 was calculated.

000325



# Install High Friction Pavement on Approach to and through Curve

In locations where drivers may brake excessively; for example, when going around curves; the road surface can become prematurely polished, reducing the pavement friction and allowing vehicles to skid when drivers brake. Drivers may also be speeding or distracted, contributing to the high-collision rates in this location. Wet road surfaces can also reduce pavement friction and cause skidding or hydroplaning. High friction surface (HFS) treatment can dramatically and immediately reduces crashes. With friction demands far exceeding conventional pavement friction, high-quality aggregate is applied to existing or potential high-crash areas to help motorists maintain better control in dry and wet driving conditions. While the initial costs are higher than conventional pavement, limited use in critical locations where high numbers of collisions occur makes the product a low-cost option over its life cycle. The City could consider installed a HFS treatment on approach to and through the curve at the end of the ramp.

### **COST-BENEFIT RATIO**

The CMF used for this assessment was 0.76 and is related to all collision types. The calculated benefit would be a reduction of 8.9 collisions over a five-year period. The expected service life for this countermeasure is 5 years, for a total benefit of \$215,212. The costs associated with this countermeasure are expected to be \$92,900. The B/C ratio is expected to be 2.32.

# Install Progressively Larger Chevron Signs

Inappropriate speeds are expected to be the major cause of the run-off-the-road type collisions occurring at this ramp. Since driving is a task with a substantial contribution from vision, the use of lighting and visual information such as signage can assist in providing appropriate cues to encourage appropriate driving speeds. Modifying the use of chevrons to employ progressively-increasing sizes throughout a curve, and adjusting the spacing of them to provide an appearance consistent with a smaller radius curve (about two-thirds the radius of the original curve) can increase perceptions of sharpness by drivers, and can result in greater speed reductions. The City could consider installing modified chevron signs along the curve.

Active chevrons, such as the ones that are currently in place on the MTO connection at the north end of the RHVP, were considered, however they are not being recommended due to the combination of their cost and their vulnerability to being hit in the context of Ramp 6. On the MTO ramp they are mounted on top of a concrete tall wall and are not exposed to being hit by vehicles. On Ramp 6, given the history of run-off-the-road collisions, the expectation that they would be struck by errant vehicles is high.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$4,000.

200003

A pavement marking placed on the roadway indicating that the driver should reduce speed for an upcoming curve is being promoted in the U.S. on sections of roads or corridors with higher than average numbers of crashes having roadway curvature as a contributing factor. The pavement marking consists of a "SLOW" legend and an arrow indicating the direction of the upcoming curve. The overall objective is to reduce the upper percentile speed, thus reducing the number of vehicles leaving the roadway and being involved in a collision. The City could consider installing these pavement markings to reinforce to drivers that they must reduce their speed for the curve.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$1,500.

## Install Dynamic / Variable Warning Sign

Dynamic or variable warning signs are widely used to convey all manners of information to drivers. In order to reinforce the need for drivers to slow their vehicles for the curve, these warning signs could be used to:

- Display the vehicle's speed versus the posted warning speed;
- Display a message "SLOW DOWN" "TOO FAST" (or other) to vehicles travelling over a set speed threshold; or
- Display a Ramp Speed Advisory sign (transition from dark to lit) when a vehicle is detected as exceeding the recommended ramp speed.

These signs have proven to be effective in reducing the speed of vehicles. The City could consider installing a dynamic / variable warning sign on approach to the curve in the ramp.

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however costs are not expected to exceed \$7,000 including solar power option, wiring, installation, etc.

## Install Flashing Amber Beacons on Signs

Using flashing beacons with a warning sign is another way to gain motorists' attention. The beacons are typically used with one of the advance Horizontal Alignment signs for a horizontal curve. One factor limiting their use is the availability of an accessible power source, although solar power panel systems can be used as well. The beacons can be flashed either alternately or simultaneously. The safety effectiveness of this particular treatment is yet to be established, but a 1970s study evaluated the effects of signing to warn drivers of wet weather skidding hazards at horizontal curves. The study concluded that agencies could significantly reduce vehicle speed by adding flashing beacons on curve warning signs. The City could consider adding flashing beacons to the warning signs and/or the chevron signs, similar to what the MTO has implemented on a ramp at the north end of the RHVP.

Partners in excellence

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure on its own; however, in combination with advance curve warning signs and chevron signs, CMFs for the devices installed collectively show a positive reduction in collisions at a curve. Costs per beacon are not expected to exceed \$3,000.

# **Relocate Signs**

There are several signs located within the gore area at the diverge between ramps 6 & 7a. Some of these signs are related to ramp 6 while other are related to ramp 7a. The City could consider making the following adjustments as illustrated in **Figure 29**:

- \* Relocate the merge sign from the wood post to the luminaire pole (it is related to ramp 6, not important for ramp 7a);
- \* Relocate the exit sign closer to the area where the grass begins; and
- Relocate the Linc sign further down the ramp or combine with the upstream RHVP sign.



Figure 29 - Possible Signage Adjustments

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$2,000.

# 6.3.10 Ramp 7a & 7b

Similar to other sites, this ramp was has a very high proportion of SMV (80%), wet surface and non-daylight collisions, and was found to have a PSI. The field review noted evidence of run off the road

CIMA+ // Partners in excellence

collisions, as well as some closely spaced and back-dropped signage at the diverge point from Ramp 6 and an inappropriate merge sign.

### Illumination

The outcome of the TAC illumination warrant indicated that illumination of the ramp is justified, however it is not being recommended at this time as the cost to install and maintain the illumination is much greater than the calculated benefit.

### **COST-BENEFIT RATIO**

The CMF used for this assessment was 0.6 and is related to all types of nighttime collisions. The expected service life for this countermeasure is 20 years. A total benefit of \$107,010 and costs of \$550,000 for a B/C ratio of 0.19 was calculated.

## Relocate Signs as per Ramp 6

The changes to the signage discussed for ramp 6 are directly applicable to ramp 7a.

### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$2,000, but would only need to be done once (i.e. through ramp 6).

## Replace Merge Sign with Lane Ends Sign

The Merge warning sign on approach to the Stone Church Road East S-N on-ramp is inappropriate for the configuration. The driver on the E-N ramp is the one who is merging onto the S-N ramp. This sign indicates that another lane is joining from the right and could cause driver confusion. A Lane Ends warning sign is required, as opposed to the Merge warning sign. The City could consider replacing the merge sign with a Wa-123 Lane Ends sign.

#### COST-BENEFIT RATIO

There is no CMF for this countermeasure; however, costs are not expected to exceed \$500 so we recommend implementing this countermeasure.

## 6.3.11 Ramp 8

The collision review indicated a positive PSI for this ramp; however the actual number of observed collisions is low. The field review highlighted the need for some sign rationalization throughout the ramp.

### Illumination

The outcome of the TAC illumination warrant indicated that illumination of the ramp is justified, however it is not being recommended at this time as the cost to install and maintain the illumination is much greater than the calculated benefit.

CIMA+ // Partners in excellence



#### **COST-BENEFIT RATIO**

The CMF used for this assessment was 0.6 and is related to all types of nighttime collisions. The expected service life for this countermeasure is 20 years. A total benefit of \$233,663 and costs of \$275,000 for a B/C ratio of 0.85 was calculated.

## Replace Road Name Signs with Advance Diagrammatic Sign

Small information signs indicating that the left lane leads to Mud Street and the right lane leads to Stone Church Road are located approximately 160 metres upstream of the forced diverge point for Mud Street and Stone Church Road, are directly behind curve warning signs and immediately before a curve. Since the information signs are small there is a good chance that a driver will not detect them. If the small information signs are missed the next available signage to inform road users of the appropriate lane decision are located at the diverge point. However, similar to the previous information signs, given the horizontal curvature of the ramp, the signs are not visible in advance of their placement and sudden lane changes, and potentially related conflicts, may occur in this area. To assist drivers, the City could consider installing a ground mounted advance diagrammatic sign (similar to example in Figure 30) on the right side of the road in the location of the existing small signs.



Figure 30 - Example of Diagrammatic Sign

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$5,000.

## Install Consistent Curve Warning Signage

The curve warning signs on either side of the road on the off-ramp provide inconsistent information regarding the severity of the curve. It is important that consistent and appropriate warning the severity of a curve be provided to a driver in order to assist them in making the appropriate decisions to safety navigate through the curve. It appears that the sign on the left is attempting to indicate that the left lane has a tighter radius than the right lane. The City could consider installing consistent and appropriate curve warning signs.

3000325

#### **COST-BENEFIT RATIO**

There is no CMF for this countermeasure; however, costs are not expected to exceed \$1,000.

## 6.3.12 Ramps 9 & 10

There were no major collision or field findings for these ramps, although they indicate a positive PSI, the number of collisions is very low.

# 6.4 Summary of Potential Countermeasures and B/C Ratios

Table 11 summarizes the countermeasures and b/c ratios for the overall study area, Table 12 summarizes the same information for road segments and Table 13 summarizes the same information for ramps.

The recommended timing for implementation of each of the countermeasures is also provided in the tables. The terms for implementation have been considered as:

- ♣ Short Term (ST) = 0 5 years;
- + Medium Term (MT) = 5 − 10 years; and
- ♣ Long Term (LT) = 10+ years.

These recommendations have been provided based on each or a combination of the following rational:

- The cost of the countermeasure;
- The benefit of the countermeasure;
- \* The ease of implementation; and/or
- + The importance of implementation.

3000325

Table 11 - Summary of Countermeasures & B/C for Overall Study Area

| Countermeasure               | B/C Ratio | Cost     | Timing |
|------------------------------|-----------|----------|--------|
| Friction Testing             | n/a       | \$10,000 | ST     |
| PRPM or                      | 3.29      | \$75,000 | ST     |
| Inverted Profile Markings    | n/a       | n/a*     | ST     |
| Wide Markings                | 3.39      | \$40,000 | ST     |
| Slippery When Wet Signs      | n/a       | \$5,000  | ST     |
| Enforcement of Travel Speeds | n/a       | n/a      | ST     |
| Trailblazer Signage          | n/a       | \$2,000  | ST     |
| Remove Lane Exit Signs       | n/a       | \$1,000  | ST     |
| Total Costs                  |           | \$13     | 3k     |

<sup>\*</sup>Costs for this countermeasure were not readily available for inclusion in this report

Table 12 - Summary of Countermeasures & B/C for Road Segments

| Name                   | Road<br>Segment      | Collisions | Field                                                                                                                    | Countermeasure                                        | B/C<br>Ratio | Cost           | Term        |
|------------------------|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|----------------|-------------|
| West of Dartnall       | Dartnall<br>1 & 2    | → None     | <ul> <li>No major findings</li> </ul>                                                                                    | <b>+</b> n/a                                          | <b>→</b> n/a | + n/a          | + n/a       |
| Between Dartnall & Mud | Dartnall<br>3, 4 & 5 | → 48% SMV  | <ul> <li>Potentially<br/>restricted<br/>sightlines for<br/>merging traffic<br/>from Dartnall<br/>onto NB RHVP</li> </ul> | <ul> <li>Extend solid white line from gore</li> </ul> | <b>→</b> n/a | <b>→</b> \$500 | <b>→</b> ST |
| Between                | 9 0                  |            | <ul> <li>Exit information sign partially obscured NB</li> <li>RHVP</li> </ul>                                            | → Remove Deer Warning<br>sign                         | → n/a        | <b>→</b> \$500 | ÷ ST        |

<sup>\*</sup> Cost is for pavement markings only. Other potential required works could increase cost substantially

<sup>\*\*</sup>It is expected that this countermeasure could be completed by City forces

<sup>\*\*\*</sup>Not including other potential works associated with the alignment adjustment

Table 13 - Summary of Countermeasures & B/C for Ramps

|               |              |                                           |                                                                                                                |                                                                                              |               | ~                  | ^           |
|---------------|--------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|--------------------|-------------|
| Name          | Ramp         | Collisions                                | Field                                                                                                          | Countermeasure                                                                               | B/C<br>Ratio  | Cost               | Term        |
|               | Ramp<br>182  | <b>→</b> n/a                              | Culvert and drop-off<br>within deflection<br>area of approach<br>eccentric loader<br>end treatment<br>(Ramp 2) | → End guiderail and<br>change end<br>treatment                                               | → n/a         | + \$11,000         | * ST        |
| Dartnall Int. | Ramp<br>3    | <b>→</b> n/a                              | → No major findings                                                                                            | <b>→</b> n/a                                                                                 | → n/a         | → n/a              | → n/a       |
|               | Ramp<br>4    | ÷ n/a                                     | → No major findings                                                                                            | → n/a                                                                                        | → n/a         | ÷ n/a              | → n/a       |
|               | Ramp<br>5    |                                           | <ul> <li>Lane ends within curve</li> </ul>                                                                     | → Restripe to one lane<br>for each ramp                                                      | → n/a         | ÷ \$8,000          | <b>→</b> MT |
|               |              |                                           | TAC illumination     warrant justified                                                                         | → Install lighting on ramp                                                                   | <b>*</b> 3.78 | <b>*</b> \$275,000 | + ST        |
| i i           |              | + Exp. > Pred. + 65% of all               |                                                                                                                | <ul> <li>Install high-friction<br/>pavement<br/>approaching and<br/>through curve</li> </ul> | ÷ 2.32        | ÷ \$93,000         | ◆ ST        |
| Mud Int.      | <del>Q</del> | ramp<br>collisions                        | <ul> <li>Closely spaced /</li> </ul>                                                                           | <ul> <li>Install progressively<br/>larger chevrons</li> </ul>                                | → n/a         | ÷ \$4,000          | + ST        |
|               | Ramp         | proportion &<br>frequency of<br>SMV, non- | eclipsing signage<br>at diverge point<br>• Evidence of lane                                                    | <ul> <li>Install pavement marking text</li> </ul>                                            | → n/a         | <b>*</b> \$1,500   | * ST        |
|               |              | daylight &<br>wet surface                 | departures                                                                                                     | <ul> <li>Install dynamic /<br/>variable speed<br/>warning sign</li> </ul>                    | → n/a         | ÷ \$7,000          | + ST        |
|               |              |                                           |                                                                                                                | <ul> <li>Install flashing<br/>amber beacons<br/>on signs</li> </ul>                          | → n/a         | <b>→</b> \$3,000   | • ST        |

| Name           | Ramp            | Collisions                                                      | Field                                                    | Countermeasure                                                            | B/C<br>Ratio | Cost                           | Term  |
|----------------|-----------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------|--------------------------------|-------|
|                |                 |                                                                 | ROSER AND                                                | → Relocate signs                                                          | + n/a        | ÷ \$2,000                      | → ST  |
|                |                 | <ul><li>→ Exp. &gt; Pred.</li><li>→ 80% of collisions</li></ul> | Closely spaced &     back dropped     signage at diverge | → Relocate signs                                                          | ∳ n/a        | <b>*</b> \$2,000               | → ST  |
|                | Ramp<br>7a 7 7b | SMV  High proportion of non- daylight & wet surface             | <ul> <li>Inappropriate merge<br/>sign</li> </ul>         | <ul> <li>Replace merge sign<br/>with Wa-123 Lane<br/>Ends sign</li> </ul> | → n/a        | ÷ \$500                        | + ST  |
|                |                 |                                                                 |                                                          | Replace road name                                                         |              |                                |       |
|                |                 | + Exp. > Pred.,                                                 | <ul> <li>Size of information<br/>signs</li> </ul>        | information signs with advance                                            | → n/a        | <b>*</b> \$5,000               | + ST  |
|                | Ramp<br>8       | however                                                         |                                                          | diagrammatic sign                                                         |              |                                |       |
|                | ŭ.              | very low #<br>of<br>collisions                                  | <ul> <li>Inconsistent curve<br/>warning signs</li> </ul> | <ul> <li>Install consistent<br/>curve warning<br/>signage</li> </ul>      | + n/a        | ÷ 1,000                        | → ST  |
| III Int.       | Ramp<br>9       | * Exp. > Pred., however very low# of collisions                 | <ul> <li>No major findings</li> </ul>                    | → n/a                                                                     | <b>↑</b> n/a | → n/a                          | ◆ n/a |
| Greenhill Int. | Ramp<br>10      | + Exp. > Pred., however very low # of collisions                | → No major findings                                      | <b>→</b> n/a                                                              | ∻ n/a        | + n/a                          | → n/a |
|                | Total Cos       | ts                                                              |                                                          |                                                                           |              | ST = \$405,000<br>MT = \$8,000 | )     |

00325

// 5

### APPENDIX A

**Safety Performance Functions Parameters** 

And

**Calibration Factors** 

| Freeway Fatal-and-  | Injury Crast      |                          | Freeway Model Cal<br>y Models                 | Drauon Fac              | tors and De          |                  | op(a + b In[   | c AADT to]       | Land                       | CHR                  |
|---------------------|-------------------|--------------------------|-----------------------------------------------|-------------------------|----------------------|------------------|----------------|------------------|----------------------------|----------------------|
| Area Type           | Through           | _                        | Model                                         | Lós                     | cation · ·           | a                | ь              | - c              | Disp. (K),                 | Calib.<br>Factor (C) |
|                     | Lanes             | No. delete la c          | K                                             |                         |                      | -5.975           | 1,492          |                  | mi                         | Factor (C)           |
| Rural               | 4                 | Multiple-V<br>Single-ve  |                                               | Freeway s               |                      | -2.126           | 0.646          |                  | 30.10                      | 1.0                  |
| · ·                 | 1                 | Ramp-en                  | trance .                                      | . Speed-ch              | ange lane            | -3.894           | 1.173          | 0.0005           |                            | 1.0                  |
| ·                   | 6                 | Ramp-exi<br>Multiple-v   |                                               | Speed-ch<br>Freeway s   | ange lane            | -2.679<br>-6.092 | 0.903          | 0.0005           | 1.78                       | 1.0                  |
|                     |                   | Single-ve                |                                               | Freeway                 |                      | -2.055           | -0.646         |                  | 30.10                      | 1.0                  |
|                     |                   | Ramp-en                  | trance -                                      | Speed-ch                | ange lane            | -4.154           | 1.173          | 0.0005           |                            | 1.00                 |
|                     | 8                 | Ramp-exi<br>Multiple-v   |                                               | Speed-ch<br>Freeway s   | ange lane            | -2.679<br>-6.140 | 0.903          | 0.0005           | 1.78                       | 1.00                 |
|                     |                   | Single-ve                |                                               | Freeway                 |                      | -1.985           | 0.646          | 0.001            | 30.10                      | 1.0                  |
|                     | 1                 | Ramp-en                  |                                               |                         | ange lane            | -4.414           | 1.173          | 0.0005           | 26.10                      | 1.0                  |
| Urban               | 4                 | Ramp-exi<br>Multiple-v   |                                               | Freeway s               | ange lane            | -2.679<br>-5.470 | 0.903          | 0.0005           | 1.78                       | 1.0                  |
| 0.001               | 1 "               | Single-ve                | hicle -                                       | Freeway s               |                      | -2.126           | 0.646          | 0.001            | 30.10                      | 1.0                  |
| (5)                 |                   | Ramp-ent                 |                                               |                         | ange lane            | -3.714           | 1.173          | 0.0005           | 26.10                      | 1.0                  |
| x x                 | 6.                | Ramp-exi<br>Multiple-v   | ehicle                                        | Freeway s               | ange lane<br>segment | -2.679<br>-5.587 | 0.903          | 0.0005           | 1.78                       | 1.0                  |
|                     | 1                 | Single-ve                | hicle                                         | Freeway s               | segment              | -2.055           | 0.646          | 0.001            | 30.10                      | 1.0                  |
| ~                   |                   | Ramp-ent                 |                                               |                         | ange lane            | -3.974<br>-2.679 | 1.173<br>0.903 | 0.0005           | 26.10<br>1.78              | 1.00                 |
| -6                  | 8                 | Ramp-exi<br>Multiple-v   |                                               | Freeway s               | ange lane<br>segment | -5.635           | 1.492          | 0.0003           | 17.60                      | 1.00                 |
| atu .               |                   | Single-ve                | hicle :                                       | Freeway s               | segment              | -1.985           | 0.646          | 0.001            | 30.10                      | 1.00                 |
| # 1 F               |                   | Ramp-ent                 |                                               | Speed-ch                |                      | -4.234           | 1.173<br>0.903 | 0.0005           | 26.10<br>- 1.78            | 1.00                 |
|                     | 10                | Ramp-exi<br>Multiple-v   |                                               | Speed-ch:<br>Freeway s  |                      | -5.842           | 1,492          | 0.0003           | 17.60                      | 1.00                 |
|                     |                   | Single-ve                | hicle                                         | Freeway s               | egment               | -1.915           | 0.646          | 0.001            | 30.10                      | 1.00                 |
| p .                 | (a) 14 (a)        | Ramp-ent                 |                                               | Speed-ch                |                      | -4.494<br>-2.679 | 1.173<br>0.903 | 0.0005<br>0.0005 | 26.10<br>1.78              | 1.00                 |
| Freeway Property-L  | )amage-Only       | Ramp-exi                 |                                               | Speed-chi               | ange iane            | Model: ex        |                |                  |                            | 1.00                 |
|                     | Through           |                          | Model                                         | Loc                     | ation                | а                | ь              | c                | · Inverse · · · Disp. (K), | Calib.               |
| Area Type Rural     | Lanes<br>4        | Multiple-v               | - Participation                               | Freeway s               |                      | -6.880           | 1.936          | 0.001            | mi<br>18.80                | Factor (C)           |
| Raidi               | 1                 | Single-vel               |                                               | Freeway s               |                      | -2.235           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-ent                 |                                               | Speed-cha               |                      | -2.895           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
|                     | 6                 | Ramp-exit<br>Multiple-v  |                                               | Speed-cha<br>Freeway s  |                      | -1.798<br>-7.141 | 0.932          | 0.0005           | 1.58<br>18.80              | 1.00                 |
|                     |                   | Single-vel               |                                               | Freeway s               |                      | -2.274           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-ent                 |                                               | Speed-cha               |                      | -3.097           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
|                     | 8                 | Ramp-exit<br>Multiple-v  |                                               | Speed-cha<br>Freeway s  |                      | -1.798<br>-7.329 | 0.932<br>1.936 | 0.0005           | 1.58                       | 1.00                 |
|                     | "                 | Single-vel               |                                               | Freeway s               |                      | -2.312           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-ent                 |                                               | Speed-cha               |                      | -3.299           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
| Urban               | 4                 | Ramp-exit<br>Multiple-ve |                                               | Speed-cha<br>Freeway s  |                      | -1.798<br>-6.548 | 0.932<br>1.936 | 0.0005           | 1.58                       | 1.00                 |
| Olban               | , "               | Single-vet               |                                               | Freeway s               |                      | -2.235           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     | -                 | Ramp-ent                 | rance                                         | Speed-cha               | ange lane            | -2.796           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
|                     | 6                 | Ramp-exit<br>Multiple-ve |                                               | Speed-cha<br>Freeway s  |                      | -1.798<br>-6.809 | 0.932<br>1.936 | 0.0005           | 1.58                       | 1.00                 |
|                     | 0                 | Single-vel               |                                               | Freeway s               |                      | -2.274           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-ent                 | rance                                         | Speed-cha               | ange lane            | -2.998           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
|                     | 8                 | Ramp-exit<br>Multiple-ve |                                               | Speed-cha<br>Freeway s  |                      | -1.798<br>-6.997 | 0.932<br>1.936 | 0.0005           | 1.58                       | 1.00                 |
|                     | °                 | Single-ver               |                                               | Freeway s               |                      | -2.312           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-enti                | rance                                         | Speed-cha               | ange lane            | -3.200           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
|                     | 10                | Ramp-exit<br>Multiple-ve |                                               | Speed-cha<br>Freeway se |                      | -1.798<br>-7.260 | 0.932<br>1.936 | 0.0005           | 1.58                       | 1.00                 |
|                     | 10                | Single-veh               |                                               | Freeway s               |                      | -2.351           | 0.876          | 0.001            | 20.70                      | 1.00                 |
|                     |                   | Ramp-enti                | rance                                         | Speed-cha               | inge lane            | -3.402           | 1.215          | 0.0005           | 24.80                      | 1.00                 |
| Freeway: Crash Seve | CONTRACTOR OF THE | Ramp-exit                |                                               | Speed-cha               | inge lane            | -1.798           | 0.932          | 0.0005           | 1.58                       | 1.00                 |
|                     |                   |                          |                                               |                         |                      | 1000             |                | Calibration      | factor                     | 1.00                 |
| Freeway Crash Dist  | ribution          | W. Carlot                | and the second                                |                         | Pro                  | portion of Cra   | shes by Seve   | rity Level for   | Specific Med               | els                  |
| Area Type           | Crash             | Туре                     | Crash Type Ca                                 | tegory                  | Main                 | Lanes            | Ramp Er        | ntrance          | Ramp                       | Exit                 |
| 1,509               |                   | 500                      |                                               |                         | FI                   | PDO              | FI             | PDO              | FI                         | PDO                  |
| Rural               | Multiple ve       | hicle                    | Head-on<br>Right-angle                        |                         | 0.018<br>0.056       | 0.004            | 0.021          | 0.004            | 0.000                      | 0.000                |
|                     |                   |                          | Rear-end                                      |                         | 0.630                | 0.508            | 0.351          | 0.260            | 0.463                      | 0.304                |
|                     |                   |                          | Sideswipe                                     |                         | 0.237                | 0.380            | . 0.128        | 0.242            | 0.104                      | 0.243                |
|                     |                   |                          | Other multiple-vehicle                        | MV Total:               | 1.000                | 1.000            | 0.011          | 0.040            | 0.000                      | 0.009                |
|                     | Single vehi       | cle                      | Crash with animal                             | iviv I Dial:            | 0.010                | 0.065            | 0.000          | 0.009            | 0.000                      | 0.061                |
|                     | 1                 |                          | Crash with fixed obje                         |                         | 0.567                | 0.625            | 0.245          | 0.296            | 0.224                      | 0.235                |
|                     |                   |                          | Crash with other obje<br>Crash with parked ve |                         | 0.031                | 0.125            | 0.021          | 0.070            | 0.030                      | 0.061                |
|                     |                   |                          | Other single-vehicle                          |                         | 0.368                | 0.162            | 0.170          | 0.066            | 0.164                      | 0.070                |
|                     |                   |                          |                                               | SV Total:               | 1.000                | 1.000            |                |                  |                            |                      |
| Irban               | Multiple vel      | nicle                    | Head-on                                       | Total:                  | 0.008                | 0.002            | 0.004          | 1.000<br>0.001   | 0.005                      | 0.002                |
| Jrban               | Widisple Ve       | HOLD                     | Right-angle                                   |                         | 0.031                | 0.002            | 0.019          | 0.016            | 0.011                      | 0.012                |
|                     | 1                 |                          | Rear-end                                      |                         | 0.750                | 0.690            | 0.543          | 0.530            | 0.549                      | 0.565                |
|                     | 1                 |                          | Sideswipe                                     | crack                   | 0.180                | 0.266            | 0.133          | 0.252            | 0.158                      | 0.138                |
|                     | 1                 |                          | Other multiple-vehicle                        | MV Total:               | 1.000                | 1.000            | 0.017          | 0.013            | 0.010                      | 0.010                |
|                     | Single vehi       | cle                      | Crash with animal                             |                         | 0.004                | 0.022            | 0.000          | 0.002            | 0.000                      | 0.007                |
|                     |                   |                          | Crash with fixed obje                         |                         | 0.722                | 0.716            | 0.194          | 0.129            | 0.196                      | 0.207                |
|                     |                   |                          | Crash with other obje                         |                         | 0.051                | 0.139            |                | 0.036            |                            | 0.030                |
|                     |                   |                          |                                               | hicle                   | 0.0151               | 0.0161           | 0.004          |                  | 0.000                      |                      |
|                     |                   |                          | Crash with parked ve<br>Other single-vehicle  | crash                   | 0.015<br>0.208       | 0.016<br>0.107   | 0.004          | 0.016            | 0.000                      | 0.023                |
|                     |                   |                          | Crash with parked ve                          |                         |                      |                  |                |                  |                            |                      |

| ramp segment Fati                       | al and lain-                    | Crack F                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              | d [c AAD]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-1) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A STATE OF THE PERSON NAMED IN                                                                                                                                        |
|-----------------------------------------|---------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 1                               | V Crash Fi                                                     | requency Models                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IVIOGEI, EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h(a . n !!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ין, וטאא ט                                                                                                                                                                                                                   | a le MAD!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| Area Type                               | Through<br>Lanes                | Number                                                         | of Vehicles Involved                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c -                                                                                                                                                                                                                          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disp. (K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calib.<br>Factor (C)                                                                                                                                                  |
| Rural                                   | 1                               | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
| 8 A                                     | ,                               | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road<br>Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.718<br>-2.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         | 2.30                            | Single vel<br>Single vel                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         |                                 | Single vel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                  |
| Urban                                   | 1 1                             | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple v                                                     | ehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0,0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         |                                 | Single vel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 1.00                                                                                                                                                                |
|                                         |                                 | Single vel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                  |
|                                         | 2                               | Single vel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road<br>Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.848<br>-3.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
| - 4                                     | 2                               | Multiple vi                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                        | 0.0699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Single vel                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
|                                         | 1 1                             | Single veh                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
|                                         | A. 1                            | Single veh                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
| Ramp Segment Pro                        | perty-Dama                      | ge-Only C                                                      | rash Frequency Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                | ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Model: ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p(a + b ln[d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AADT,]+                                                                                                                                                                                                                      | d [c AAD]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [-]) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Vinter                                                                                                                                                               |
| Area Type                               | Through                         | Number                                                         | of Vehicles Involved                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c                                                                                                                                                                                                                            | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disp. (K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calib.<br>Factor (C)                                                                                                                                                  |
|                                         | Lanes                           | N de distanta e co                                             | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cotespas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.004                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mi<br>12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                  |
| Rural                                   | 1                               | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.819<br>-4.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
| A 48                                    |                                 | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Single veh                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
|                                         |                                 | Single veh                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
| * * * * *                               | 1.5                             | Single veh                                                     | nicle                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.001                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
| Urban                                   | 1                               | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         |                                 | Single veh                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.77<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00                                                                                                                                                          |
|                                         |                                 | Single veh<br>Single veh                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.508<br>-2.659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                  |
|                                         | 2                               | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         | _                               | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The second second                                                                                                                                                                                                            | 100,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
|                                         | 1 1                             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                  |
|                                         | 1                               | Multiple ve                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70<br>12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                  |
|                                         |                                 | Multiple ve<br>Single veh                                      | ehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100000000000000000000000000000000000000                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00                                                                                                                                                          |
|                                         |                                 | Single veh<br>Single veh                                       | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.475<br>-1.400<br>-1.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001<br>0.001<br>0.001                                                                                                                                                                                                      | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.70<br>9.77<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00<br>1.00<br>1.00                                                                                                                                                  |
|                                         |                                 | Single veh<br>Single veh<br>Single veh                         | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.475<br>-1.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.256<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001<br>0.001                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.70<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00                                                                                                                                                          |
| Ramp Segment Cras                       | sh Severity                     | Single veh<br>Single veh<br>Single veh                         | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.475<br>-1.400<br>-1.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001<br>0.001<br>0.001                                                                                                                                                                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.70<br>9.77<br>9.77<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00                                                                                                                                                  |
| Ramp Segment Cras                       |                                 | Single veh<br>Single veh<br>Single veh                         | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.475<br>-1.400<br>-1.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001<br>0.001<br>0.001                                                                                                                                                                                                      | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.70<br>9.77<br>9.77<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00                                                                                                                                          |
|                                         |                                 | Single veh<br>Single veh<br>Single veh                         | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.475<br>-1.400<br>-1.193<br>-2.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.256<br>0.689<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001<br>0.001<br>0.001<br>0.001                                                                                                                                                                                             | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.70<br>9.77<br>9.77<br>9.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00                                                                                                                                          |
|                                         |                                 | Single veh<br>Single veh<br>Single veh<br>Model                | ehicle<br>nicle<br>nicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.256<br>0.689<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve                                                                                                                                                                             | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00                                                                                                                                          |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model                | crash Type Cate                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog<br>C-D F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.256<br>0.689<br>0.689<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                  |
| Ramp Segment Cras                       | sh Distribut                    | Single veh<br>Single veh<br>Single veh<br>Model                | crash Type Cate                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prop<br>C-D F<br>Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.256<br>0.689<br>0.689<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015                                                                                                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>2.00<br>4els<br>2amp<br>PDO<br>0.009                                                                                          |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model                | crash Type Cate Head-on Right-angle                                                                                                                                                                                                                                                                                                                                                                                                                                | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog<br>C-D F<br>Fl<br>0.015<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.256<br>0.689<br>0.689<br>0.689<br>0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.010                                                                                                                                 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>Pity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>4els<br>Ramp<br>PDO<br>0.009<br>0.005                                                                                         |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model                | ehicle icle icle icle icle icle icle icle                                                                                                                                                                                                                                                                                                                                                                                                                          | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog<br>C-D F<br>FI<br>0.015<br>0.010<br>0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.000<br>0.000<br>0.000<br>0.005<br>0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015<br>0.010<br>0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>dels<br>Ramp<br>PDO<br>0.009<br>0.005<br>0.550                                                                        |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model                | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog<br>C-D F<br>FI<br>0.015<br>0.0707<br>0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.000<br>0.000<br>0.005<br>0.550<br>0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.0707<br>0.129                                                                                                                                | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015<br>0.010<br>0.707<br>0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>dels<br>Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335                                                               |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model                | ehicle icle icle icle icle icle icle icle                                                                                                                                                                                                                                                                                                                                                                                                                          | C-D road<br>Entrance<br>Exit<br>C-D road<br>egory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Proc<br>C-D F<br>Fl<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139                                                                                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>Pity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015<br>0.010<br>0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>2 dels<br>Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101                                                             |
| Ramp Segment Cras                       | Crash Multiple vei              | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe                                                                                                                                                                                                                                                                                                                                                                                           | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475<br>-1.400<br>-1.193<br>-2.344<br>Prog<br>C-D F<br>FI<br>0.015<br>0.0707<br>0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.000<br>0.000<br>0.005<br>0.550<br>0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.0707<br>0.129                                                                                                                                | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>dels<br>Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335                                                               |
| Ramp Segment Cras                       | crash                           | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle                                                                                                                                                                                                                                                                                                                                                                    | C-D road<br>Entrance<br>Exit<br>C-D road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.475 -1.400 -1.193 -2.344  Prop C-D F FI 0.015 0.010 0.707 0.129 0.139 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.009<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000                                                                                             | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>Fl<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                          |
| Ramp Segment Cras                       | Crash Multiple vei              | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | Crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with other object                                                                                                                                                                                                                                                                                                                    | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop<br>C-D F<br>F<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.422                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.055<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mode<br>Exit F<br>Fl<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>9 0.005<br>0.055<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011                                                 |
| Ramp Segment Cras                       | Crash Multiple vei              | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with fixed object Crash with other object Crash with parked veh                                                                                                                                                                                                                                                                           | C-D road Entrance Exit C-D road egory crash MV Total: t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prop<br>C-D F<br>F<br>0.010<br>0.707<br>0.129<br>0.010<br>0.012<br>0.422<br>0.000<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>Entranc<br>FI 0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit P<br>FI<br>0.015<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                          |
| Ramp Segment Cras                       | Crash Multiple vei              | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | Crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with other object                                                                                                                                                                                                                                                                                                                    | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop<br>C-D F<br>Fl 0.015<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024                                                                                 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mode<br>Exit F<br>I<br>0.015<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>6els<br>Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374 |
| Ramp Segment Cras                       | Crash Multiple vei              | Single veh<br>Single veh<br>Single veh<br>Model<br>ion<br>Type | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with fixed object Crash with other object Crash with parked veh                                                                                                                                                                                                                                                                           | C-D road Entrance Exit C-D road egory crash MV Total: t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prop<br>C-D F<br>F<br>0.010<br>0.707<br>0.129<br>0.010<br>0.012<br>0.422<br>0.000<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>Entranc<br>FI 0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit P<br>FI<br>0.015<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                          |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh              | Single veh Single veh Single veh Model  Type  nicle            | crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle or                                                                                                                                                                                                                                                                                              | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proj. C-D F FI 0.015 0.010 0.707 0.129 0.139 1.000 0.012 0.422 0.000 0.024 0.542 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.055<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.351<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>II<br>0.015<br>0.010<br>0.707<br>0.129<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash<br>Multiple vei           | Single veh Single veh Single veh Model  Type  nicle            | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle cr                                                                                                                                                                                                                                                                           | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop<br>C-D F<br>Fl 0.015<br>0.010<br>0.022<br>0.022<br>0.024<br>0.024<br>0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                                | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>I<br>0.015<br>0.707<br>0.129<br>0.010<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh              | Single veh Single veh Single veh Model  Type  nicle            | crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle or                                                                                                                                                                                                                                                                                              | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proj. C-D F FI 0.015 0.010 0.707 0.129 0.139 1.000 0.012 0.422 0.000 0.024 0.542 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.055<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>Entranc<br>FI<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.351<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>II<br>0.015<br>0.010<br>0.707<br>0.129<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh              | Single veh Single veh Single veh Model  Type  nicle            | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle or  Head-on Right-angle                                                                                                                                                                                                                                                      | C-D road Entrance Exit C-D road egory crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop<br>C-D F<br>Fl 0.015<br>0.010<br>0.012<br>0.022<br>0.000<br>0.012<br>0.022<br>0.000<br>0.022<br>0.000<br>0.022<br>0.000<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.00 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>FI 0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>1.000                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.005<br>0.055<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mode<br>Exit F<br>I 0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>1.000<br>0.024<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000                                     |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh              | Single veh Single veh Single veh Model  Type  nicle            | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle cr                                                                                                                                                                                                                                                                           | C-D road Entrance Exit C-D road egory crash MV Total: t ticicle ash SV Total: crash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prop C-D F FI 0.015 0.010 0.707 0.129 0.012 0.024 0.542 1.000 0.015 0.010 0.707 0.129 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374<br>1.000<br>0.009<br>0.005<br>0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>shes by Seve<br>Entranc<br>FI<br>0.015<br>0.10<br>0.707<br>0.129<br>0.139<br>1.000<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.005<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374<br>1.000<br>0.009<br>0.005<br>0.055<br>0.350<br>0.055<br>0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>I<br>0.015<br>0.010<br>0.707<br>0.129<br>0.001<br>0.012<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010        | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh Single vehic | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle cr                                                                                                                                                                                                                                                                                              | C-D road Entrance Exit C-D road egory crash MV Total: t t icicle ash SV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prop<br>C-D F<br>Fl 0.015<br>0.010<br>0.012<br>0.022<br>0.000<br>0.012<br>0.024<br>1.000<br>0.015<br>0.010<br>0.010<br>0.012<br>0.024<br>1.000<br>0.012<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.01 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.009<br>0.005<br>0.550<br>0.335<br>0.011<br>0.005<br>0.335<br>0.344<br>1.000<br>0.009<br>0.005<br>0.550<br>0.335<br>0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.015 0.010 0.02 0.024 0.000 0.024 0.000 0.012 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.010 0.012 0.010 0.010 0.010 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>erity Level for<br>e Ramp<br>PDO<br>0.009<br>0.005<br>0.550<br>0.335<br>0.011<br>1.000<br>0.022<br>0.538<br>0.011<br>1.000<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>1.000<br>0.015<br>0.010<br>0.002<br>0.013<br>0.000<br>0.012<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.010<br>0.024<br>0.542<br>1.000<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0 | 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.005 0.550 0.335 0.011 0.005 0.550 0.334 1.000 0.005 0.550 0.335 0.011 1.000                                     |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh              | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with parked veh Other single-vehicle or  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle or                                                                                                                                                                                                                                                    | C-D road Entrance Exit C-D road egory egory erash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proj. C-D F FI 0.010 0.707 0.129 0.139 1.000 0.003 1.000 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.055<br>0.355<br>0.101<br>0.002<br>0.055<br>0.374<br>1.000<br>0.009<br>0.005<br>0.374<br>1.000<br>0.009<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.015 0.010 0.707 0.129 0.139 1.000 0.012 0.422 0.000 0.015 0.010 0.707 0.129 0.139 1.000 0.003                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>Calibration<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.355<br>0.101<br>1.000<br>0.022<br>0.534<br>1.000<br>0.005<br>0.374<br>1.000<br>0.009<br>0.005<br>0.355<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>1.001<br>0.015<br>0.010<br>0.707<br>0.129<br>0.4020<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh Single vehic | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with parked veh Other single-vehicle cr  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with parked veh Other single-vehicle cr                                                                                                                                                                                      | C-D road Entrance Exit C-D road egory crash MV Total: t t t crash SV Total: crash MV Total: cr | Prop<br>C-D F<br>Fl 0.015<br>0.010<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.422<br>0.000<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.139<br>0.13 | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.005<br>0.374<br>1.000<br>0.009<br>0.005<br>0.550<br>0.374<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.707 0.129 0.422 0.000 0.024 0.542 1.000 0.015 0.010 0.707 0.129 0.139 1.000 0.015 0.010 0.707 0.129 0.139 0.003 0.703                                    | 0.0000 0.0000 0.0000 0.0000 0.0000  Calibration erity Level for e Ramp PDO 0.009 0.055 0.335 0.101 1.000 0.009 0.005 0.550 0.335 0.101 1.000 0.009 0.005 0.550 0.335 0.101 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.70 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh Single vehic | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with animal Crash with parked veh Other single-vehicle crash  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle  Crash with parked veh Other single-vehicle crash  Crash with animal Crash with animal Crash with fixed object Crash with animal Crash with other object Crash with other object                                                | C-D road Entrance Exit C-D road eggory crash MV Total: t ticle ash SV Total: crash MV Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prop C-D F FI 0.015 0.010 0.707 0.129 0.139 1.000 0.024 0.542 1.000 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374<br>1.000<br>0.009<br>0.005<br>0.550<br>0.344<br>1.000<br>0.009<br>0.005<br>0.344<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005 | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.707 0.129 0.139 1.000 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015                                                                              | 0.0000 0.0000 0.0000 0.0000 0.0000  Calibration  writy Level for e Ramp PDO 0.009 0.005 0.550 0.335 0.101 1.000 0.022 0.538 0.011 1.000 0.055 0.374 1.000 0.055 0.374 1.000 0.009 0.055 0.344 1.000 0.009 0.005 0.550 0.335 0.101 1.000 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>I<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>0.139<br>0.139<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0    | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras                       | Crash Multiple veh Single vehic | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate  Crash Type Cate  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with parked veh Other single-vehicle cr  Head-on Right-angle Rear-end Sideswipe Other multiple-vehicle cr  Crash with fixed object Crash with fixed object Crash with animal Crash with fixed object Crash with animal Crash with fixed object Crash with other object Crash with other object Crash with parked veh Crash with parked veh | C-D road Entrance Exit C-D road Extrance Exit C-D road egory crash MV Total: t ticle ash SV Total: crash MV Total: t ticle ide ash SV Total: crash MV Total: t ticle crash MV Total: t ticle crash MV Total: t ticle ide ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Progress of the control of the contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.009<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.344<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.355<br>0.550<br>0.374<br>1.000<br>0.005<br>0.355<br>0.355<br>0.374<br>1.000<br>0.005<br>0.355<br>0.355<br>0.374<br>1.000<br>0.005<br>0.355<br>0.355<br>0.374<br>1.000<br>0.005<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355 | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.015 0.010 0.707 0.129 0.139 1.000 0.015 0.010 0.707 0.129 0.139 0.130 0.100 0.015 0.010 0.015 0.010 0.003 0.718 0.015 0.010                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>erity Level for<br>e Ramp<br>PDO<br>0.005<br>0.550<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.344<br>1.000<br>0.005<br>0.550<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.055<br>0.374<br>1.000<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.0 | 12.70 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |
| Ramp Segment Cras<br>Area Type<br>Rural | Crash Multiple veh Single vehic | Single veh Single veh Single veh Model  ion  Type  nicle       | crash Type Cate licle iicle iicle iicle iicle iicle iicle iicle  Crash Type Cate l-lead-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with parked veh Other single-vehicle or  I-lead-on Right-angle Rear-end Sideswipe Other multiple-vehicle Crash with animal Crash with fixed object Crash with fixed object Crash with parked veh Other single-vehicle or                                          | C-D road Entrance Exit C-D road Extrance Exit C-D road egory crash MV Total: t ticle ash SV Total: crash MV Total: t ticle ide ash SV Total: crash MV Total: t ticle crash MV Total: t ticle crash MV Total: t ticle ide ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prop C-D F FI 0.015 0.010 0.707 0.129 0.139 1.000 0.024 0.542 1.000 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.256<br>0.689<br>0.689<br>0.689<br>0.689<br>0.689<br>0.005<br>0.005<br>0.335<br>0.101<br>1.000<br>0.022<br>0.538<br>0.011<br>0.055<br>0.374<br>1.000<br>0.009<br>0.005<br>0.550<br>0.344<br>1.000<br>0.009<br>0.005<br>0.344<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005 | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.707 0.129 0.139 1.000 0.015 0.010 0.707 0.129 0.139 1.000 0.003 0.718 0.015                                                                              | 0.0000 0.0000 0.0000 0.0000 0.0000  Calibration  writy Level for e Ramp PDO 0.009 0.005 0.550 0.335 0.101 1.000 0.022 0.538 0.011 1.000 0.055 0.374 1.000 0.055 0.374 1.000 0.009 0.055 0.344 1.000 0.009 0.005 0.550 0.335 0.101 1.000 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.70<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>9.77<br>factor<br>Specific Mod<br>Exit F<br>I<br>0.015<br>0.010<br>0.707<br>0.129<br>0.139<br>0.139<br>0.139<br>0.024<br>0.542<br>1.000<br>0.015<br>0.010<br>0.707<br>0.129<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0    | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                               |

| Ramp Terminal Fata | l-and-Injur         | y Crash Frequency M                   | al Model Calibration F<br>odels Model: exp( | a + b ln[c A     | ADT m/2+c      | AADT au /2] | + d ln[c AA    | DT + c AAL           | OT an ])             |
|--------------------|---------------------|---------------------------------------|---------------------------------------------|------------------|----------------|-------------|----------------|----------------------|----------------------|
| Area Type          | Terminal<br>Config. | Control Type                          | Through Lanes                               | а                | ъ              | c ·         | d              | Inverse<br>Disp. (K) | Calib.<br>Factor (C) |
| Rural -            | D3ex                | One-way stop                          | 2                                           | -2.899           | 0.582          | 0.001       | 0.899          | 2.16                 | 1.00                 |
|                    |                     |                                       | 3 4                                         | -2.899<br>-2.899 | 0.582<br>0.582 | 0.001       | 0.899          | 2.16<br>2.16         | 1.00                 |
|                    |                     | Signalized                            | 2                                           | -1.352           | 0.379          | 0.001       | 0.394          | 8.72                 | 1.00                 |
|                    | ,                   |                                       | - 3<br>4                                    | -1.192<br>-1.032 | 0.379<br>0.379 | 0.001       | 0.394          | 8.72<br>8.72         | 1.00                 |
|                    | D3en -              | One-way stop                          | 2                                           | -2.817           | 0.709          | 0.001       | 0.730          | 0.92                 | 1.00                 |
| 1.0- 2.22          |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 4                                         | -2.817<br>-2.817 | 0.709<br>0.709 | 0.001       | 0.730<br>0.730 | 0.92<br>0.92         | 1.00                 |
|                    |                     | Signalized                            | . 2                                         | -2.068           | 0.265          | 0.001       | 0.905          | 5.37                 | 1.00                 |
| 18.00              | × ,                 | 10                                    | 3 4                                         | 1.908<br>-1.748  | 0.265<br>0.265 | 0.001       | 0.905          | 5.37<br>5.37         | - 1.00<br>1.00       |
|                    | D4                  | One-way stop                          | 2                                           | -2.740           | 1.008          | 0.001       | 0.177          | 2.58                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -2.740<br>-2.740 | 1.008          | 0.001       | 0.177<br>0.177 | 2.58<br>2.58         | 1.00                 |
| or w               |                     | Signalized                            | . 2                                         | -2.655           | 1.191          | 0.001       | 0.131          | 11.50                | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -2.495<br>-2.335 | 1.191          | 0.001       | 0.131<br>0.131 | 11.50<br>11.50       | 1.00                 |
| *                  | A4                  | One-way stop                          | 2                                           | -2.899           | 0.582          | 0,001       | 0.899          | 2.16                 | 1.00                 |
|                    | 8                   |                                       | 3 . 4 .                                     | -2.899<br>-2.899 | 0.582<br>0.582 | 0.001       | 0.899          | 2.16<br>2.16         | 1.00                 |
|                    |                     | Signalized                            | 2                                           | -1,352           | 0.379          | 0.001       | 0.394          | 8.72                 | 1.00                 |
|                    |                     |                                       | 3 4                                         | -1.192<br>-1.032 | 0.379          | 0.001       | 0.394          | 8.72<br>8.72         | 1.00                 |
|                    | B4                  | One-way stop                          | . 2                                         | -2.817           | 0.709          | 0.001       | 0,730          | 0.92                 | .1.00                |
|                    | 4 3                 |                                       | 3 4                                         | -2.817           | 0.709          | 0.001       | 0.730<br>0.730 | 0.92<br>0.92         | 1.00                 |
|                    | ****                | Signalized                            | 2                                           | -2.068           | 0.265          | 0.001       | 0.905          | 5.37                 | 1.00                 |
| ,                  |                     |                                       | - 3<br>4                                    | -1.908<br>-1.748 | 0.265<br>0.265 | 0.001       | 0.905<br>0.905 | 5.37<br>5.37         | 1.00                 |
|                    | A2                  | One-way stop                          | 2                                           | -2,363           | 0.260          | - 0.001     | 0.947          | 3.40                 | 1.00                 |
| ** ** ***          |                     | V oc. de a secondada                  | 3                                           | -2.363<br>2.363  | 0.260          | 0.001       | 0.947          | 3.40                 | - 1.00               |
|                    |                     | Signalized                            | 2                                           | -0.458           | 0.325          | 0,001       | 0.212          | 2.17                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -0.298<br>-0.138 | 0.325<br>0.325 | 0.001       | 0.212          | 2.17<br>2.17         | 1.00                 |
|                    | B2                  | One-way stop                          | 2                                           | -2.363           | 0.260          | 0.001       | 0.947          | 3.40                 | 1.00                 |
| A 8 60 1           |                     | 5 8 5 H                               | 3                                           | -2.363           | 0.260          | 0.001       | 0.947          | 3.40<br>3.40         | 1.00                 |
|                    |                     | Signalized                            | 2                                           | -0.458           | 0.325          | 0.001       | 0,212          | 2.17                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -0.298<br>-0.138 | 0.325<br>0.325 | 0.001       | 0.212          | 2.17<br>2.17         | 1.00                 |
| Jrban              | D3ex                | One-way stop                          | 2                                           | -3.223           | 0.582          | 0.001       | 0.899          | 2,16                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -3.223<br>-3.223 | 0.582          | 0.001       | 0.899          | 2.16<br>2.16         | 1.00                 |
|                    |                     | Signalized                            | 2                                           | -1.352           | 0.379          | 0.001       | 0.394          | 8.72                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -1.192<br>-1.032 | 0.379          | 0.001       | 0.394          | 8.72<br>8.72         | 1.00                 |
|                    |                     |                                       | 5                                           | -0.872           | 0.379          | 0.001       | 0.394          | 8.72                 | 1.00                 |
|                    | D3en                | One-way stop                          | 6 2                                         | -0.712<br>-3.141 | 0.379          | 0.001       | 0.394          | 8.72<br>0.92         | 1.00                 |
|                    |                     |                                       | 3                                           | -3.141           | 0.709          | 0.001       | 0.730          | 0.92                 | 1.00                 |
|                    |                     | Signalized                            | 4 2                                         | -3.141<br>-2.068 | 0.709          | 0.001       | 0.730          | 0.92<br>5.37         | 1.00                 |
|                    |                     |                                       | 3                                           | -1.908           | 0.265          | 0.001       | 0.905          | 5.37                 | 1.00                 |
|                    |                     |                                       | 4 5                                         | -1.748<br>-1.588 | 0.265          | 0.001       | 0,905<br>0,905 | 5.37<br>5.37         | 1.00                 |
|                    | D4                  | One way step                          | 6 -                                         | -1.428<br>-3.064 | 0.265<br>1.008 | 0.001       | 0.905          | 5.37<br>2.58         | 1.00                 |
|                    | D4                  | One-way stop                          | 3                                           | -3.064           | 1.008          | 0.001       | 0.177          | 2.58                 | 1.00                 |
|                    |                     | Classificad                           | 4                                           | -3.064           | 1.008          | 0.001       | 0.177          | 2.58                 | 1.00                 |
|                    |                     | Signalized                            | 2 3                                         | -2.655<br>-2.495 | 1.191          | 0.001       | 0.131          | 11.50<br>11.50       | 1.00                 |
|                    |                     |                                       | 4 5                                         | -2.335           | 1.191          | 0.001       | 0.131<br>0.131 | 11.50<br>11.50       | 1.00                 |
|                    |                     |                                       | 6                                           | -2.175<br>-2.015 | 1.191          | 0.001       | 0.131          | 11.50                | 1.00                 |
|                    | A4                  | One-way stop                          | 2 3                                         | -3.223           | 0.582          | 0.001       | 0,899          | 2.16<br>2.16         | 1.00                 |
|                    |                     |                                       | 4                                           | -3.223<br>-3.223 | 0.582<br>0.582 | 0.001       | 0.899          | -2.16                | 1.00                 |
|                    |                     | Signalized                            | 2 3                                         | -1.352<br>-1.192 | 0.379          | 0.001       | 0.394<br>0.394 | 8.72<br>8.72         | 1.00                 |
|                    |                     |                                       | . 4                                         | -1.032           | 0.379          | 0.001       | 0.394          | 8.72                 | 1.00                 |
|                    |                     |                                       | 5<br>6                                      | -0.872<br>-0.712 | 0.379          | 0.001       | 0.394          | 8.72<br>8.72         | 1.00                 |
|                    | B4                  | One-way stop                          | 2                                           | -3.141           | 0.709          | 0.001       | 0.730          | 0.92                 | 1.00                 |
|                    |                     |                                       | 3 4                                         | -3.141<br>-3.141 | 0.709          | 0.001       | 0.730          | 0.92<br>0.92         | 1.00                 |
|                    |                     | Signalized                            | 2                                           | -2.068           | 0.265          | 0.001       | 0.905          | 5.37                 | 1.00                 |
|                    |                     |                                       | 3<br>4                                      | -1.908<br>-1.748 | 0.265          | 0.001       | 0.905          | 5.37<br>5.37         | 1.00                 |
|                    |                     |                                       | 5                                           | -1.588           | 0.265          | 0.001       | 0,905          | 5.37                 | 1.00                 |
|                    | A2                  | One-way stop                          | 6 2                                         | -1.428<br>-2.687 | 0.265          | 0.001       | 0.905          | 5.37<br>3.40         | 1.00                 |
|                    |                     | and may                               | 3                                           | -2.687           | 0.260          | 0.001       | 0.947          | 3,40                 | 1.00                 |
|                    | 1                   | Signalized                            | 4 2                                         | -2.687<br>-0.458 | 0.260          | 0.001       | 0.947          | 3.40<br>2.17         | 1.00                 |
|                    | ľ                   | o.g. minou                            | 3                                           | -0.298           | 0.325          | 0.001       | 0.212          | 2.17                 | 1.00                 |
|                    |                     |                                       | 4<br>5                                      | -0.138<br>0.022  | 0.325          | 0.001       | 0.212          | 2.17<br>2.17         | 1.00                 |
|                    |                     |                                       | 6                                           | 0.182            | 0.325          | 0.001       | 0.212          | 2.17                 | 1.00                 |
|                    | B2 (                | One-way stop                          | 2 3                                         | -2.687<br>-2.687 | 0.260          | 0.001       | 0.947          | 3.40<br>3.40         | 1.00                 |
|                    |                     |                                       | 4                                           | -2.687           | 0.260          | 0,001       | 0.947          | 3.40                 | 1.00                 |
|                    | 1                   | Signalized                            | 2 3                                         | -0.458<br>-0.298 | 0.325<br>0.325 | 0.001       | 0.212          | 2.17<br>2.17         | 1.00                 |
|                    |                     |                                       | 4                                           | -0.298           | 0.325          | 0.001       | 0.212          | 2.17                 | 1.00                 |
|                    |                     |                                       |                                             |                  | 0.325          | 0.001       | 0.212          | 2.17                 | 1.00                 |
|                    | 1                   |                                       | .5.<br>6                                    | 0.022            | 0.325          | 0.001       | 0.212          | 2.17                 | 1.00                 |

| Ramp Terminal Pro | 1                | ge-Only Crash Freq. | Models Model: exp(              | a + b ln[c A                                                       | ADT in/2+c                                         | AADT and [2]                                                | + d In[c AA                                        | DT + c AAL                                   | Tan])                                        |
|-------------------|------------------|---------------------|---------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Area Type         | Terminal Config. | Control Type        | Through Lanes                   | . a .                                                              | ь                                                  | c                                                           | d                                                  | Inverse<br>Disp. (K)                         | Calib,<br>Factor (C)                         |
| Rural             | D3ex             | One-way stop        | 2                               | -2.670                                                             | 0,595                                              | 0.001                                                       | 0.937                                              | 6.57                                         | 1.00                                         |
|                   |                  |                     | 3                               | -2.670<br>-2.670                                                   | 0.595<br>0.595                                     | 0.001                                                       | 0.937<br>0.937                                     | 6.57<br>6.57                                 | 1.00                                         |
|                   |                  | Signalized          | 2                               | -2.247                                                             | 0.797                                              | 0,001                                                       | - 0.384                                            | 4.05                                         | 1.00                                         |
|                   |                  |                     | 3 4                             | -2,159<br>-2.071                                                   | 0.797<br>0.797                                     | 0.001                                                       | 0,384<br>0,384                                     | 4.05<br>4.05                                 | 1.00<br>1.00                                 |
|                   | D3en ·           | One-way stop        | 2                               | -2.358                                                             | 0.885                                              | 0,001                                                       | 0.350                                              | 3.90                                         | 1.00                                         |
|                   | 4.1              |                     | 3 4                             | -2,358<br>-2,358                                                   | 0.885                                              | 0.001                                                       | 0,350<br>0,350                                     | 3.90<br>3.90                                 | 1.00                                         |
|                   | 1 .              | Signalized          | 2                               | -2.931                                                             | 0.741                                              | 0.001                                                       | 0.845                                              | 3.72                                         | - 1.00                                       |
|                   | 1                |                     | 3 4 .                           | -2.843<br>-2.755                                                   | 0.741                                              | 0.001                                                       | 0.845<br>0.845                                     | 3.72<br>3.72                                 | 1.00                                         |
|                   | D4               | One-way stop        | 2.                              | -2.432                                                             | 0.845                                              | 0.001                                                       | 0.476                                              | 4.27                                         | 1.00                                         |
|                   | 1                |                     | 3 4                             | -2.432<br>-2.432                                                   | 0.845<br>0.845                                     | 0.001                                                       | 0.476<br>0.476                                     | 4.27<br>4.27                                 | 1.00                                         |
|                   | 1                | Signalized          | 2                               | -2.248                                                             | 0.879                                              | 0.001                                                       | 0,545                                              | 7.21                                         | 1.00                                         |
| l                 |                  |                     | 3                               | -2.160<br>-2.072                                                   | 0.879<br>0.879                                     | 0.001                                                       | 0.545<br>0.545                                     | 7.21<br>7.21                                 | 1.00                                         |
|                   | A4               | One-way stop        | 2                               | -2.670                                                             | 0.595                                              | 0.001                                                       | 0.937                                              | 6.57                                         | 1.00                                         |
|                   |                  | v ":= " "           | 3 4                             | -2.670<br>-2.670                                                   | 0,595<br>0.595                                     | 0.001                                                       | 0.937<br>0.937                                     | 6.57<br>6.57                                 | 1.00                                         |
|                   |                  | Signalized          | 2                               | -2.247                                                             | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05<br>4.05                                 | 1.00<br>1.00                                 |
|                   |                  |                     | 3 4                             | -2.159<br>-2.071                                                   | 0.797<br>0.797                                     | 0.001<br>0.001                                              | 0.384<br>0.384                                     | 4.05                                         | 1.00                                         |
|                   | B4               | One-way stop        | 2                               | -2.358                                                             | 0.885                                              | - 0.001                                                     | 0.350                                              | 3.90                                         | 1.00                                         |
|                   |                  | As .                | 3<br>- 4                        | -2.358<br>-2.358                                                   | 0.885<br>- 0.885                                   | 0.001                                                       | 0.350<br>0.350                                     | 3.90                                         | 1.00                                         |
|                   |                  | Signalized .        | 2                               | -2.931                                                             | 0.741                                              | 0.001                                                       | 0.845                                              | 3.72<br>3.72                                 | 1.00                                         |
|                   |                  | 20 00               | 3<br>4                          | -2.843<br>-2.755                                                   | 0.741<br>0.741                                     | 0.001<br>0.001                                              | 0.845<br>- 0.845                                   | 3.72                                         | 1.00                                         |
|                   | A2               | One-way stop        | 2 3 -                           | -3.055<br>-3.055                                                   | 0.773<br>0.773                                     | 0.001                                                       | 0.878<br>0.878                                     | 5.49<br>5.49                                 | 1.00                                         |
|                   |                  |                     | 4                               | -3.055                                                             | 0.773                                              | 0.001                                                       | 0.878                                              | 5.49                                         | 1.00                                         |
| Mile e            | 5.00 T 100       | Signalized -        | 3                               | 1.537<br>-1.449                                                    | - 0.592<br>0.592                                   | 0.001                                                       | 0.516<br>0.516                                     | 4.27<br>4.27                                 | 1.00                                         |
|                   |                  |                     | 4                               | -1.361                                                             | 0.592                                              | 0.001                                                       | 0.516                                              | 4.27                                         | 1.00                                         |
|                   | B2               | One-way stop        | 2 3                             | -3.055<br>-3.055                                                   | 0.773                                              | 0.001                                                       | 0.878<br>0.878                                     | 5.49<br>5.49                                 | 1.00                                         |
|                   |                  |                     | 4                               | -3.055                                                             | 0.773                                              | 0.001                                                       | 0.878                                              | 5.49                                         | 1.00                                         |
|                   |                  | Signalized          | 2                               | -1.537<br>-1.449                                                   | 0.592<br>0.592                                     | 0.001                                                       | 0.516<br>0.516                                     | 4.27                                         | 1.00                                         |
|                   |                  |                     | 4                               | -1.361                                                             | 0.592                                              | 0.001                                                       | 0.516                                              | 4.27                                         | 1.00                                         |
| Urban             | D3ex             | One-way stop        | 2 3                             | -2.670<br>-2.670                                                   | 0.595                                              | 0.001                                                       | 0.937                                              | 6.57<br>6.57                                 | 1.00                                         |
|                   |                  |                     | 4                               | -2.670                                                             | 0.595                                              | 0.001                                                       | 0.937                                              | 6.57                                         | 1.00                                         |
|                   |                  | Signalized          | 2                               | -2.247<br>-2.159                                                   | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05<br>4.05                                 | 1.00                                         |
|                   |                  |                     | 4                               | -2.071                                                             | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05                                         | 1.00                                         |
|                   |                  |                     | 5<br>6                          | -1.984<br>-1.896                                                   | 0.797<br>0.797                                     | 0.001                                                       | 0.384<br>0.384                                     | 4.05<br>4.05                                 | 1.00<br>1.00                                 |
|                   | D3en             | One-way stop        | 2 3                             | -2.358<br>-2.358                                                   | 0.885<br>0.885                                     | 0.001                                                       | 0.350<br>0.350                                     | 3.90<br>3.90                                 | 1.00<br>1.00                                 |
|                   |                  |                     | 4                               | -2.358                                                             | 0.885                                              | 0.001                                                       | 0.350                                              | 3.90                                         | 1.00                                         |
|                   |                  | Signalized          | 2 - 3                           | -2.931<br>-2.843                                                   | 0.741                                              | 0.001                                                       | 0.845<br>0.845                                     | 3.72<br>3.72                                 | 1.00                                         |
|                   |                  |                     | 4                               | -2.755                                                             | 0.741                                              | 0.001                                                       | 0.845                                              | 3.72                                         | 1.00                                         |
|                   |                  |                     | 5                               | -2.668<br>-2.580                                                   | 0.741                                              | 0.001                                                       | 0,845<br>0.845                                     | 3.72<br>3.72                                 | 1.00                                         |
|                   | D4               | One-way stop        | 2                               | -2.432                                                             | 0.845                                              | 0.001                                                       | 0.476                                              | 4.27                                         | 1.00                                         |
|                   |                  |                     | 3<br>4                          | -2.432<br>-2.432                                                   | 0.845                                              | 0.001                                                       | 0.476                                              | 4.27<br>4.27                                 | 1.00                                         |
|                   |                  | Signalized          | 2                               | -2.248                                                             | 0.879                                              | 0.001                                                       | 0.545                                              | 7.21                                         | 1.00                                         |
|                   |                  |                     | 3 4                             | -2.160<br>-2.072                                                   | 0.879                                              | 0.001                                                       | 0,545<br>0.545                                     | 7.21<br>7.21                                 | 1.00                                         |
|                   |                  |                     | 5                               | -1.985                                                             | 0.879                                              | 0.001                                                       | 0.545                                              | 7.21                                         | 1.00                                         |
|                   | A4               | One-way stop        | 6 2                             | -1.897<br>-2.670                                                   | 0.879                                              | 0.001                                                       | 0.545                                              | 7.21<br>6.57                                 | 1,00                                         |
|                   |                  |                     | 3                               | -2.670                                                             | 0.595                                              | 0.001                                                       | 0.937                                              | 6.57                                         | 1.00                                         |
|                   |                  | Signalized          | 4 2                             | -2.670<br>-2.247                                                   | 0.595                                              | 0.001                                                       | 0.937                                              | 6.57<br>4.05                                 | 1.00                                         |
|                   |                  |                     | 3                               | -2.159<br>-2.071                                                   | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05<br>4.05                                 | 1.00                                         |
|                   |                  |                     | 4<br>5                          | -1.984                                                             | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05                                         | 1.00                                         |
|                   | B4               | One-way etca        | 6 2                             | -1.896<br>-2.358                                                   | 0.797                                              | 0.001                                                       | 0.384                                              | 4.05<br>3.90                                 | 1.00                                         |
|                   | 54               | One-way stop        | 3                               | -2.358                                                             | 0.885                                              | 0.001                                                       | 0.350                                              | 3.90                                         | 1.00                                         |
|                   |                  | Signalized          | 4 2                             | -2.358<br>-2.931                                                   | 0.885                                              | 0.001                                                       | 0.350                                              | 3.90<br>3.72                                 | 1.00                                         |
|                   |                  | Olditorized         | 3                               | -2.843                                                             | 0.741                                              | 0.001                                                       | 0.845                                              | 3.72                                         | 1.00                                         |
|                   |                  |                     | 4<br>5                          | -2.755<br>-2.668                                                   | 0.741                                              | 0.001                                                       | 0.845                                              | 3.72<br>3.72                                 | 1.00                                         |
|                   |                  |                     | 6                               | -2.580                                                             | 0.741                                              | 0,001                                                       | 0.845                                              | 3,72                                         | 1.00                                         |
|                   | A2               | One-way stop        | 2 3                             | -3.055<br>-3.055                                                   | 0.773                                              | 0.001                                                       | 0.878                                              | 5.49<br>5.49                                 | 1.00                                         |
|                   |                  |                     | 4                               | -3.055                                                             | 0.773                                              | 0.001                                                       | 0.878                                              | 5.49                                         | 1.00                                         |
|                   |                  | Signalized          | 2 3                             | -1.537<br>-1.449                                                   | 0.592                                              | 0.001                                                       | 0.516<br>0.516                                     | 4.27<br>4.27                                 | 1.00                                         |
|                   | 1                |                     |                                 | -1.361                                                             | 0.592                                              | 0.001                                                       | 0.516                                              | 4.27                                         | 1.00                                         |
|                   |                  |                     | 4                               |                                                                    |                                                    |                                                             |                                                    |                                              |                                              |
|                   |                  |                     | 5                               | -1.274                                                             | 0.592                                              | 0.001                                                       | 0.516                                              | 4.27                                         | 1.00                                         |
|                   |                  | One-way stop        | 5<br>6<br>2                     | -1.274<br>-1.186<br>-3.055                                         | 0.592                                              | 0.001                                                       | 0.516<br>0.878                                     | 4.27<br>5.49                                 | 1.00                                         |
|                   |                  | One-way stop        | 5<br>6<br>2<br>3                | -1.274<br>-1.186<br>-3.055<br>-3.055                               | 0.592<br>0.773<br>0.773                            | 0.001<br>0.001<br>0.001                                     | 0.516<br>0.878<br>0.878                            | 4.27<br>5.49<br>5.49                         | 1.00<br>1.00<br>1.00                         |
|                   | B2               | One-way stop        | 5<br>6<br>2<br>3<br>4           | -1.274<br>-1.186<br>-3.055<br>-3.055<br>-3.055<br>-1.537           | 0.592<br>0.773<br>0.773<br>0.773<br>0.592          | 0.001<br>0.001<br>0.001<br>0.001<br>0.001                   | 0.516<br>0.878<br>0.878<br>0.878<br>0.516          | 4.27<br>5.49<br>5.49<br>5.49<br>4.27         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00         |
|                   | B2               |                     | 5<br>6<br>2<br>3<br>4<br>2<br>3 | -1.274<br>-1.186<br>-3.055<br>-3.055<br>-3.055<br>-1.537<br>-1.449 | 0.592<br>0.773<br>0.773<br>0.773<br>0.592<br>0.592 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001 | 0.516<br>0.878<br>0.878<br>0.878<br>0.516<br>0.516 | 4.27<br>5.49<br>5.49<br>5.49<br>4.27<br>4.27 | 1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00 |
|                   | B2               |                     | 5<br>6<br>2<br>3<br>4           | -1.274<br>-1.186<br>-3.055<br>-3.055<br>-3.055<br>-1.537           | 0.592<br>0.773<br>0.773<br>0.773<br>0.592          | 0.001<br>0.001<br>0.001<br>0.001<br>0.001                   | 0.516<br>0.878<br>0.878<br>0.878<br>0.516          | 4.27<br>5.49<br>5.49<br>5.49<br>4.27         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00         |

| Ramp Terminal Cras | n factor for signal-contr             | alled to make also           | Calibration | factor for        | no unu oto            | o controllos      | torminole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|--------------------|---------------------------------------|------------------------------|-------------|-------------------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                    |                                       | olied terminals.             | Calibration | Tactor for C      | one-way sto           | b-coun onec       | terrinas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0     |
| Ramp Terminal Cras | I DISTRIBUTION                        |                              | T - P-      |                   | rashes by Sev         |                   | - Cassifia Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dela    |
|                    | O                                     | C                            |             |                   |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Area Type          | Crash Type                            | Crash Type Category          | FI          | alized<br>PDO     | FI FI                 | ay Stop           | FI FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y Stop  |
|                    |                                       | l                            |             |                   |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Rural              | Multiple vehicle                      | Head-on                      | 0.000       | 10000000          | The Administration of | The second second | The state of the s | 0.00    |
| x w                | W 9-3                                 | Right-angle                  | 0.333       | The second second |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000000 |
|                    |                                       | Rear-end                     | 0.552       |                   |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 4                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Sideswipe                    | 0.000       |                   |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.094   |
| * 1 4              |                                       | Other multiple-vehicle crash | 0.014       | 0.013             | 0.013                 | 0.026             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | St. 10 1.25                  |             |                   | S. F. IV. 7           |                   | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 26.50 |
|                    | Single vehicle                        | Crash with animal            | 0.000       | 0.000             | 0.000                 | 0.000             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Crash with fixed object      | 0.043       | 0.077             | 0.078                 | 0.158             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063   |
|                    |                                       | Crash with other object      | 0.000       | 0.000             | 0.000                 | 0.005             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Crash with parked vehicle    | 0.000       | 0.013             | 0.007                 | 0.015             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Other single-vehicle crash   | - 0.058     | 0.019             | 0.065                 | 0.026             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063   |
|                    |                                       | (* * B * E                   | 14.         |                   |                       |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x x 4   |
|                    |                                       | Total:                       | 1.000       | 1.000             | 1.000                 | 1.000             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000   |
| Urban              | Multiple vehicle                      | Head-on                      | 0.011       | 0.007             | 0.017                 | 0.012             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Right-angle                  | 0.260       | 0.220             | 0.458                 | 0.378             | 0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.333   |
| the grant to       |                                       | Rear-end                     | 0.625       |                   |                       |                   | -0,727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.500   |
| ed as a            |                                       | Sideswipe                    | 0.042       | 0.149             | 0.025                 | 0.079             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Other multiple-vehicle crash | 0.009       | 0.020             | 0.017                 | 0.016             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | outer manages to more or don |             |                   |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| × 38 %             | Single vehicle                        | Crash with animal            | 0.000       | 0.000             | 0.000                 | 0.000             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    | omgie romaie                          | Crash with fixed object      | 0.033       | 0.050             | 0.085                 | .0.110            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.167   |
|                    |                                       | Crash with other object      | 0.001       | 0.002             | 0.000                 | 0.000             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    | Į.                                    | Crash with parked vehicle    | 0.001       | 0.002             | 0.000                 | 0.008             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    |                                       | Other single-vehicle crash   | 0.018       | 0.002             | 0.025                 | 0.020             | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                    | 1                                     | Outer angle-verticle crash   | 0.010       | 0.007             | 0.025                 | 0.020             | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
| 1 0 2 2 1 1 1      | ***   1                               | Total:                       | 1.000       | 1,000             | 1.000                 | 1.000             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000   |
|                    |                                       | I Olai.                      | 1.000       | 1.000             | 1.000                 | 1.000             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000   |

### **APPENDIX**

CS erational Analysis esults

|                                                                                                                               |                                                 |                            | GMENTS WORKSHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                           | V. P. W. V.                                     | · - 273 - 17               | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to the      | 7.0 30. 52. 5                                                                        |
| Analyst Agency or Company Date Performed Analysis Time Period                                                                 | HG<br>CIMA<br>23/07/2013<br>AM Peak             |                            | Highway/Direction of Tra<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 1EB Mainline<br>Il Interchange                                                       |
| Project Description Redh.                                                                                                     |                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                      |
| e Oper.(LOS)                                                                                                                  | n. a a raskara<br>sa                            | Q D                        | Des.(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o Pla       | nning Data                                                                           |
| Flow Inputs                                                                                                                   |                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                                                                                      |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K                                                                                 |                                                 | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95<br>5   | al<br>Barra Barra                                                                    |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                                              |                                                 | veh/h                      | General Terrain:<br>Grade % Length<br>Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level<br>mi |                                                                                      |
| Calculate Flow Adjus                                                                                                          | tments                                          |                            | The second secon | a special   | 2 may 4 1 1 2                                                                        |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                              | 1.00<br>1.5                                     | State of State of State of | $E_{R}$ $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2         | er e e euror e gran a ann                                                            |
| Speed Inputs                                                                                                                  | 7.0                                             |                            | Calc Speed Adj and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                      |
|                                                                                                                               | 30.0                                            | r.                         | Calc Speed Adj and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tro.        |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance                                                                                          | 12.0<br>6.0                                     | ft<br>ft                   | f <sub>LW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | mph                                                                                  |
| Number of Lanes, N                                                                                                            | 2                                               |                            | f <sub>LC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | mph                                                                                  |
| Total Ramp Density, TRD                                                                                                       | 0.50                                            | ramps/mi                   | TRD Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8         | mph                                                                                  |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                                                               | 75.4                                            | mph<br>mph                 | FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.6        | mph                                                                                  |
| LOS and Performance                                                                                                           | Measures                                        |                            | Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | · · · · · · · · · · · · · · · · · · ·                                                |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x N  x f <sub>p</sub> )  S  D = v <sub>p</sub> / S  LOS                |                                                 | pc/h/ln<br>mph<br>pc/mi/ln | Design (N)  Design LOS  v <sub>p</sub> = (V or DDHV) / (PHF)  x f <sub>p</sub> )  S  D = v <sub>p</sub> / S  Required Number of Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                      |                                                 |                            | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ,                                                                                    |
| N - Number of lanes  / - Hourly volume  / <sub>p</sub> - Flow rate  .OS - Level of service speed  DDHV - Directional design h | S - Speed D - Density FFS - Free-fl BFFS - Base | ow speed                   | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 11-13     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:36 PM

|                                                                                                                        | BASIC FRI                                            | EEWAY SE                           | GMENTS WORKSHI                                                                                                                                                 | EET                       | a a grada giri                                                                      |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                    |                                                      | - 10 32 FCQ - 1                    | Site Information                                                                                                                                               | ·<br>·                    | 1 1 1 1 1 2 2 2 2 M 194                                                             |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                 | HG<br>CIMA<br>23/07/2013<br>PM Peak                  |                                    | Highway/Direction of Tra<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                           |                           | 1EB Mainline<br>Il Interchange                                                      |
| Project Description Redh                                                                                               | III Safety Study                                     |                                    | ) == /NI)                                                                                                                                                      | DI-                       |                                                                                     |
| θ Oper.(LOS)  Flow Inputs                                                                                              |                                                      | Q L                                | Des.(N)                                                                                                                                                        | 0 Pla                     | nning Data                                                                          |
| Volume, V<br>AADT                                                                                                      | 2864                                                 | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                     | 0.95<br>5                 | 1                                                                                   |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | veh/h                              | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                 |                           | i i jajan dina                                                                      |
| Calculate Flow Adjus                                                                                                   | tments                                               | Francisco e                        | es a let sur dependent in the extra of a                                                                                                                       | THE ROPE AND              | constitution and a                                                                  |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                       | 1.00<br>1.5                                          |                                    | $E_{R}$ $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R})]$                                                                                                           | 1.2<br>- 1)1 0.976        | gir emin pagin ta kena a seg                                                        |
| Speed Inputs                                                                                                           |                                                      |                                    | Calc Speed Adj and                                                                                                                                             |                           | 7                                                                                   |
| Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS | 12.0<br>6.0<br>2<br>0.50                             | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                    | 0.0<br>0.0<br>1.8<br>73.6 | mph<br>mph<br>mph<br>mph                                                            |
| OS and Performance                                                                                                     | e Measures                                           |                                    | Design (N)                                                                                                                                                     |                           |                                                                                     |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x N  (f <sub>p</sub> ) S D = v <sub>p</sub> / S LOS             | N x f <sub>HV</sub> 1545<br>71.7<br>21.5<br>C        | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N) Design LOS  v <sub>p</sub> = (V or DDHV) / (PHF  x f <sub>p</sub> ) S D = v <sub>p</sub> / S  Required Number of Lan                                |                           | pc/h/ln<br>mph<br>pc/mi/ln                                                          |
| Glossary                                                                                                               |                                                      |                                    | Factor Location                                                                                                                                                |                           |                                                                                     |
| N - Number of lanes  / - Hourly volume  / - Flow rate  OS - Level of service  peed  DDHV - Directional design h        | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | y<br>flow speed                    | E <sub>R</sub> - Exhibits 11-10, 11-1<br>E <sub>T</sub> - Exhibits 11-10, 11-1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibit<br>11-3 | 1, 11-13                  | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:46 PM

|                                                                                |                                                      |                  |                                                                                                                                                                    | ET                       |                                                                                                                |
|--------------------------------------------------------------------------------|------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| General Information                                                            |                                                      | · 1              | Site Information                                                                                                                                                   | X                        | A Part of the Attractor to                                                                                     |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period         | HG<br>CIMA<br>23/07/2013<br>AM Peak                  |                  | Highway/Direction of Trav<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                              |                          | 1WB Mainline<br>Il Interchange                                                                                 |
| Project Description Redh                                                       | ill Safety Study                                     |                  |                                                                                                                                                                    |                          | · · · · · · · · · · · · · · · · · · ·                                                                          |
| e Oper.(LOS)                                                                   | * * *                                                | 0 0              | Des.(N)                                                                                                                                                            | o Pla                    | nning Data                                                                                                     |
| Flow Inputs                                                                    |                                                      |                  |                                                                                                                                                                    |                          |                                                                                                                |
| Volume, V<br>AADT                                                              | 2866                                                 | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.95<br>5                |                                                                                                                |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D         |                                                      | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi         | ilán e                                                                                                         |
| Calculate Flow Adjus                                                           | tments                                               |                  |                                                                                                                                                                    | Rates and and            |                                                                                                                |
| Гр<br>Б <sub>Т</sub>                                                           | 1.00<br>1.5                                          | iggs to a se     | $E_{R}$ $f_{HV} = \frac{1}{[1 + P_{T}(E_{T} - 1) + P_{R}(E_{R} - 1)]}$                                                                                             | 1.2<br>1)1 <i>0</i> .976 | ersee is a session months and                                                                                  |
| Speed Inputs                                                                   |                                                      | <del></del>      | Calc Speed Adj and                                                                                                                                                 |                          |                                                                                                                |
| ane Width                                                                      | 12.0                                                 | ft               |                                                                                                                                                                    |                          | THE COLUMN TWO IS NOT THE OWNER, AND ADDRESS OF THE OWNER, AND ADDRESS OF THE OWNER, AND ADDRESS OF THE OWNER, |
| Rt-Side Lat. Clearance                                                         | 6.0                                                  | ft               | f <sub>LW</sub>                                                                                                                                                    | 0.0                      | mph                                                                                                            |
| Number of Lanes, N                                                             | 2                                                    |                  | f <sub>LC</sub>                                                                                                                                                    | 0.0                      | mph                                                                                                            |
| otal Ramp Density, TRD                                                         | 0.50                                                 | ramps/mi         | TRD Adjustment                                                                                                                                                     | 1.8                      | mph                                                                                                            |
| FS (measured)                                                                  |                                                      | mph              | FFS                                                                                                                                                                | 73.6                     | mph                                                                                                            |
| Base free-flow Speed,<br>BFFS                                                  | 75.4                                                 | mph              |                                                                                                                                                                    | 70.0                     | трп                                                                                                            |
| OS and Performance                                                             | e Measures                                           |                  | Design (N)                                                                                                                                                         |                          |                                                                                                                |
| Operational (LOS) p = (V or DDHV) / (PHF x N                                   | l x f                                                |                  | <u>Design (N)</u><br>Design LOS                                                                                                                                    |                          |                                                                                                                |
| f <sub>p</sub> )                                                               | 71.7                                                 | pc/h/ln<br>mph   | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                                                        | N x f <sub>HV</sub>      | pc/h/ln                                                                                                        |
| ) = v <sub>p</sub> / S                                                         | 21.6                                                 | pc/mi/ln         | s                                                                                                                                                                  |                          | mph                                                                                                            |
| OS                                                                             | C                                                    | Pommin           | D = v <sub>p</sub> / S                                                                                                                                             | - NI                     | pc/mi/ln                                                                                                       |
| Nanami                                                                         |                                                      |                  | Required Number of Lane                                                                                                                                            | s, N                     |                                                                                                                |
| Blossary                                                                       |                                                      |                  | Factor Location                                                                                                                                                    |                          |                                                                                                                |
| F - Number of lanes  - Hourly volume  - Flow rate  OS - Level of service  peed | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | y<br>flow speed  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                          | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1                            |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:47 PM

|                                                                            | BASIC FR                               | EEWAY SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMENTS WORKSH                                                                                                                                      | IEET                     | 5 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Information                                                        |                                        | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site Information                                                                                                                                   | diversity.               | ALLSON CARLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period     | HG<br>CIMA<br>23/07/2013<br>PM Peak    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Highway/Direction of T<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                 |                          | 1WB Mainline<br>all Interchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project Description Redh                                                   | ill Safety Study                       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e Oper.(LOS)                                                               | A 404 44 A 404 A                       | 0 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Des.(N)                                                                                                                                            | o Pla                    | anning Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Flow Inputs                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K                              | 3100                                   | veh/h<br>veh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak-Hour Factor, PHI<br>%Trucks and Buses, P<br>%RVs, P <sub>R</sub>                                                                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peak-Hr Direction Prop, D DDHV = AADT x K x D                              |                                        | veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | General Terrain: Grade % Length Up/Down                                                                                                            | Level<br>mi              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calculate Flow Adjus                                                       | tments                                 | 1000 Dec 200 D | Car to the transfer of the transfer of the care                                                                                                    | e mention to was         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| f <sub>p</sub>                                                             | 1.00                                   | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K                                                                                                                                                  | 1.2                      | entre de la companya |
| E <sub>T</sub>                                                             | 1.5                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_{HV} = 1/[1+P_T(E_T-1)+P_R(E_T)]$                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Speed Inputs                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calc Speed Adj ar                                                                                                                                  | d FFS                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ane Width                                                                  | 12.0                                   | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rt-Side Lat. Clearance                                                     | 6.0                                    | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>LW</sub>                                                                                                                                    | 0.0                      | mph .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lumber of Lanes, N                                                         | 2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f <sub>LC</sub>                                                                                                                                    | 0.0                      | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| otal Ramp Density, TRD                                                     | 0.50                                   | ramps/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRD Adjustment                                                                                                                                     | 1.8                      | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FS (measured)<br>Base free-flow Speed,                                     |                                        | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFS                                                                                                                                                | 73.6                     | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BFFS                                                                       | 75.4                                   | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .OS and Performanc                                                         | e Measures                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Design (N)                                                                                                                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Operational (LOS)  (p = (V or DDHV) / (PHF x i                             | N x f <sub>HV</sub> 1672               | pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHI                                                                                          | = x N x f <sub>Liv</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (f <sub>p</sub> )                                                          |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x f <sub>p</sub> )                                                                                                                                 | п                        | pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                            | 70.0                                   | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                                                                                                                                  |                          | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $v = v_p / S$                                                              | 23.9                                   | pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $D = v_p / S$                                                                                                                                      |                          | pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OS                                                                         | С                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Number of La                                                                                                                              | nes, N                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Glossary                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor Location                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I - Number of lanes  ' - Hourly volume  - Flow rate  OS - Level of service | S - Speed<br>D - Densit<br>FFS - Free- | T.y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E <sub>R</sub> - Exhibits 11-10, 11-<br>E <sub>T</sub> - Exhibits 11-10, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhib | 11, 11-13                | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Copyright © 2012 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:47 PM

|                                                                                                             | BASIC FR                                    | EWAY SE                                 | GMENTS WORKSHEE                                                                                                                                                    | <u> </u>                                    | CK 1.4 1 2 1.                                                                       |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                         | y Arm                                       | ****                                    | Site Information                                                                                                                                                   | *****                                       | tis vieti                                                                           |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                      | HG<br>CIMA<br>23/07/2013<br>AM Peak         | w.i.                                    | Highway/Direction of Trav<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                              | el <i>RHVP</i> 2<br><i>Dartnall</i><br>2013 | EB Mainline<br>Interchange                                                          |
| Project Description Redh                                                                                    | ill Safety Study                            | <u>*</u>                                |                                                                                                                                                                    |                                             |                                                                                     |
| 9 Oper.(LOS)                                                                                                |                                             | Q E                                     | Des.(N)                                                                                                                                                            | o Plan                                      | ning Data                                                                           |
| Flow Inputs                                                                                                 |                                             |                                         |                                                                                                                                                                    |                                             |                                                                                     |
| Volume, V<br>AADT                                                                                           | 2766                                        | veh/h<br>veh/day                        | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.95<br>5                                   |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                |                                             | veh/h                                   | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi                            |                                                                                     |
| Calculate Flow-Adjus                                                                                        | tments                                      | (4) (A. (466)) (A.                      | egenes e mes a mas a particular academical                                                                                                                         | P and the second section ( ) and (          | * *** * *** ** *                                                                    |
| f <sub>p</sub>                                                                                              | 1.00                                        | N NOTE OF THE                           | ER                                                                                                                                                                 | 1.2                                         | and the second second                                                               |
| E <sub>T</sub>                                                                                              | 1.5                                         |                                         | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                       |                                             |                                                                                     |
| Speed Inputs                                                                                                |                                             |                                         | Calc Speed Adj and                                                                                                                                                 | FFS                                         |                                                                                     |
| _ane Width                                                                                                  | 12.0                                        | ft                                      |                                                                                                                                                                    |                                             |                                                                                     |
| Rt-Side Lat. Clearance                                                                                      | 6.0                                         | ft                                      | f <sub>LW</sub>                                                                                                                                                    | 0.0                                         | mph                                                                                 |
| Number of Lanes, N                                                                                          | 2                                           |                                         | $f_{LC}$                                                                                                                                                           | 0.0                                         | mph                                                                                 |
| Total Ramp Density, TRD                                                                                     | 0.50                                        | ramps/mi                                | TRD Adjustment                                                                                                                                                     | 1.8                                         | mph                                                                                 |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                                             | 75.4                                        | mph<br>mph                              | FFS                                                                                                                                                                | 73.6                                        | mph                                                                                 |
| LOS and Performance                                                                                         | e Measures                                  |                                         | Design (N)                                                                                                                                                         |                                             |                                                                                     |
| Operational (LOS)                                                                                           |                                             |                                         | Design (N) Design LOS                                                                                                                                              |                                             |                                                                                     |
| $y_p = (V \text{ or DDHV}) / (PHF \times N)$ $(f_p)$                                                        |                                             | pc/h/ln                                 | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                                                        | $N \times f_{HV}$                           | pc/h/ln                                                                             |
| S                                                                                                           | 72.3                                        | прп                                     | s p                                                                                                                                                                |                                             | mph                                                                                 |
| $0 = v_p / S$                                                                                               | 20.6                                        | pc/mi/ln                                | $D = v_p / S$                                                                                                                                                      |                                             | pc/mi/ln                                                                            |
| .OS                                                                                                         | С                                           |                                         | Required Number of Lanes                                                                                                                                           | s, N                                        | •                                                                                   |
| Blossary                                                                                                    |                                             | *************************************** | Factor Location                                                                                                                                                    |                                             |                                                                                     |
| N - Number of lanes / - Hourly volume /p - Flow rate OS - Level of service peed DDHV - Directional design h | S - Speed D - Densit FFS - Free- BFFS - Bas | y<br>flow speed                         | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 | 11-13                                       | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:48 PM

| e e e e e e e e e e e e e e e e e e e                                                     | O Company of the Comp | a jaka                                   | e de la compania de<br>La compania de la co |                     | and the saturation             |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|
|                                                                                           | DASIC ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EEWAY SE                                 | GMENTS WORKSHE                                                                                                                                                                                                                  | ET                  |                                |
| * ST * * * * * * * * * * * * * * * * * *                                                  | DASIC FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELVVA! SE                                | GIVIEN 13 WORKSHE                                                                                                                                                                                                               | <u>Elia</u>         | Street, and the second         |
| General Information                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·//j+//,/-                               | Site Information                                                                                                                                                                                                                | ** (*) * *          | W 2 2 2 2 2                    |
|                                                                                           | HG<br>CIMA<br>23/07/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sa ta                                    | Highway/Direction of Trav<br>From/To<br>Jurisdiction                                                                                                                                                                            | Dartnali            | I Interchange                  |
| Analysis Time Period                                                                      | PM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | Analysis Year                                                                                                                                                                                                                   | 2013                | e 's and the more              |
| Project Description Redh                                                                  | ill Safety Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                 | 1                   |                                |
| e Oper.(LOS)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 [                                      | Des.(N)                                                                                                                                                                                                                         | o Plar              | nning Data                     |
| Flow Inputs                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                 |                     |                                |
| Volume, V<br>AADT                                                                         | 2214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | veh/h<br>veh/day                         | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                                                                                      | 0.95<br>5           |                                |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | veh/h                                    | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                                                                                  | 0<br>Level<br>mi    | . s jest saging.               |
| Calculate Flow Adjus                                                                      | tments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | TOTAL COMMERCIAL CONTRACTOR                                                                                                                                                                                                     | NEST EL KA          |                                |
| f                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | E <sub>R</sub>                                                                                                                                                                                                                  | 1.2                 | A STATE OF BUILDINGS AND A     |
| E <sub>T</sub>                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | $f_{HV} = 1/[1+P_T(E_T-1)+P_R(E_R-1)]$                                                                                                                                                                                          | 1)10.976            |                                |
| Speed Inputs                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUMAN                                    | Calc Speed Adj and                                                                                                                                                                                                              |                     |                                |
|                                                                                           | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Caic Speed Adj and                                                                                                                                                                                                              | ггэ                 |                                |
| Lane Width                                                                                | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft                                       |                                                                                                                                                                                                                                 |                     |                                |
| Rt-Side Lat. Clearance                                                                    | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft                                       | f <sub>LW</sub>                                                                                                                                                                                                                 | 0.0                 | mph                            |
| Number of Lanes, N                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | f <sub>LC</sub>                                                                                                                                                                                                                 | 0.0                 | mph                            |
| Total Ramp Density, TRD                                                                   | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ramps/mi                                 | TRD Adjustment                                                                                                                                                                                                                  | 1.8                 | mph                            |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                           | 75.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mph<br>mph                               | FFS                                                                                                                                                                                                                             | 73.6                | щрh                            |
| LOS and Performance                                                                       | Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | Design (N)                                                                                                                                                                                                                      |                     |                                |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Design (N)                                                                                                                                                                                                                      |                     |                                |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>x f <sub>p</sub> ) | Ixf <sub>HV</sub> 1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pc/h/ln                                  | Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                                                                                                             | N x f <sub>HV</sub> | pc/h/ln                        |
| S                                                                                         | 74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mph                                      | x f <sub>p</sub> )                                                                                                                                                                                                              |                     |                                |
| $D = v_p / S$                                                                             | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/mi/ln                                 | S                                                                                                                                                                                                                               |                     | mph                            |
| Los                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paradiciples I construction of the const | D = v <sub>p</sub> / S<br>Required Number of Lane                                                                                                                                                                               | s, N                | pc/mi/ln                       |
| Glossary                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Factor Location                                                                                                                                                                                                                 |                     |                                |
| N - Number of lanes                                                                       | S - Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                        | E Evhibita 11 10 11 10                                                                                                                                                                                                          |                     | f Evhibit 44.0                 |
| V - Hourly volume                                                                         | D - Densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | E <sub>R</sub> - Exhibits 11-10, 11-12                                                                                                                                                                                          |                     | f <sub>LW</sub> - Exhibit 11-8 |
| v <sub>n</sub> - Flow rate                                                                | FFS - Free-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                        | E <sub>T</sub> - Exhibits 11-10, 11-11                                                                                                                                                                                          | , 11-13             | f <sub>LC</sub> - Exhibit 11-9 |
| LOS - Level of service<br>speed                                                           | BFFS - Bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits                                                                                                                                                           | 11-2.               | TRD - Page 11-11               |

Copyright © 2012 University of Florida, All Rights Reserved HCS 2010<sup>TM</sup> Version 6.41

|                                                                                  | BASIC FR                                             | EEWAY SE             | GMENTS WORKSHE                                                                                                                                            | EI                 | Charles Carried State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Information                                                              | Alex at all at                                       |                      | Site Information                                                                                                                                          | Agran es           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period           | HG<br>CIMA<br>23/07/2013<br>AM Peak                  | ж г г<br>ж кг г<br>к | Highway/Direction of Tra<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                      | Dartna             | all Interchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Description Redl                                                         |                                                      | y                    | AND THE STREET                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e Oper.(LOS)                                                                     | to beautiful to                                      | 0 [                  | Des.(N)                                                                                                                                                   | o Pla              | anning Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flow Inputs                                                                      | -                                                    |                      |                                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K                                    | 3075                                                 | veh/h<br>veh/day     | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub>                                                                        | 0.95<br>5<br>0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                 |                                                      | veh/h                | General Terrain:<br>Grade % Length<br>Up/Down %                                                                                                           |                    | i dikasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculate Flow Adjus                                                             |                                                      |                      | er is a man when the same is                                                                                                                              |                    | dere de la la la composição de la compos |
| f<br>p                                                                           | 1.00                                                 |                      | E <sub>R</sub>                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E <sub>T</sub>                                                                   | 1.5                                                  |                      | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R)$                                                                                                                   | - 1)] <i>0.976</i> | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Speed Inputs                                                                     |                                                      |                      | Calc Speed Adj and                                                                                                                                        | FFS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ane Width                                                                        | 12.0                                                 | ft                   |                                                                                                                                                           | *                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rt-Side Lat. Clearance                                                           | 6.0                                                  | ft                   | f <sub>LW</sub>                                                                                                                                           | 0.0                | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number of Lanes, N                                                               | 3                                                    |                      | f <sub>LC</sub>                                                                                                                                           | 0.0                | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| otal Ramp Density, TRD                                                           | 0.50                                                 | ramps/mi             | TRD Adjustment                                                                                                                                            | 1.8                | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FS (measured)<br>Base free-flow Speed,                                           |                                                      | mph                  | FFS                                                                                                                                                       | 73.6               | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BFFS                                                                             | 75.4                                                 | mph                  |                                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OS and Performanc                                                                | e Measures                                           |                      | Design (N)                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operational (LOS)  p = (V or DDHV) / (PHF x )                                    | N x f <sub>HV 1106</sub>                             | pc/h/ln              | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF)                                                                                                | v N v f            | * 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T <sub>p</sub> )                                                                 |                                                      |                      | $x f_p$                                                                                                                                                   | 'HV                | pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ) - v / S                                                                        | 74.9<br>14.8                                         | mph<br>pc/mi/ln      | s                                                                                                                                                         |                    | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OS S                                                                             | 14.6<br>B                                            | рс/пп/п              | $D = v_p / S$                                                                                                                                             |                    | pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                  |                                                      |                      | Required Number of Lane                                                                                                                                   | es, N              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Blossary                                                                         |                                                      |                      | Factor Location                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I - Number of lanes  ' - Hourly volume  - Flow rate  OS - Level of service  peed | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | ty<br>-flow speed    | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-12<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits | , 11-13            | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:48 PM

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BASIC FRE                                      | EWAY SE                    | GMENTS WORKSH                                                                                                                                              | IEEI                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                            | Site Information                                                                                                                                           |                                 | mar and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HG<br>CIMA<br>23/07/2013<br>PM Peak            |                            | Highway/Direction of T<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                         | 1.04                            | 2WB Mainline<br>Il Interchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project Description Redh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ill Safety Study                               |                            |                                                                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e Oper.(LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | 0 E                        | es.(N)                                                                                                                                                     | o Pla                           | nning Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Flow Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                            |                                                                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3376                                           | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P<br>%RVs, P <sub>R</sub><br>General Terrain:                                                                  | 5<br>0<br>Level                 | * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DDHV = AADT x K x D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | veh/h                      | Grade % Length<br>Up/Down                                                                                                                                  |                                 | ig. Mis. L.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculate Flow Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tments                                         | re la Talana d             | r et es de cr en encembre d'Oren                                                                                                                           |                                 | and the second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                           |                            | ER                                                                                                                                                         | 1.2                             | Mary State of State o |
| E <sub>T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                            |                            | $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_T)]$                                                                                                                     | <sub>R</sub> - 1)] <i>0.976</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Speed Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                            | Calc Speed Adj ar                                                                                                                                          | nd FFS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ane Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.0                                           | ft                         |                                                                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rt-Side Lat. Clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.0                                            | ft                         | $f_{LW}$                                                                                                                                                   | 0.0                             | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lumber of Lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                              |                            | f <sub>LC</sub>                                                                                                                                            | 0.0                             | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| otal Ramp Density, TRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                           | ramps/mi                   | TRD Adjustment                                                                                                                                             | 1.8                             | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.4                                           | mph<br>mph                 | FFS                                                                                                                                                        | 73.6                            | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OS and Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Measures                                     |                            | Design (N)                                                                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $v_p = (V \text{ or DDHV}) / (PHF \times N)$ | N x f <sub>HV</sub> 1214<br>74.5<br>16.3<br>B  | pc/h/ln<br>mph<br>pc/mi/ln | Design (N) Design LOS  v <sub>p</sub> = (V or DDHV) / (PHI x f <sub>p</sub> ) S D = v <sub>p</sub> / S Required Number of La                               |                                 | pc/h/ln<br>mph<br>pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Glossary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                            | Factor Location                                                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N - Number of lanes  / - Hourly volume  Flow rate  OS - Level of service  peed  DHV - Directional design h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S - Speed D - Density FFS - Free-f BFFS - Base | low speed                  | E <sub>R</sub> - Exhibits 11-10, 11-<br>E <sub>T</sub> - Exhibits 11-10, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhib<br>11-3 | 11, 11-13                       | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:49 PM

|                                                                                                                    | BASIC FRI                                            | EWAY SE          | GMENTS WORKSHE                                                                                                                                                    | ET :                | Fare Transport                                                                      |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                | *                                                    |                  | Site Information                                                                                                                                                  |                     |                                                                                     |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                             | HG<br>CIMA<br>23/07/2013<br>AM Peak                  |                  | Highway/Direction of Trav<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                             |                     | Interchange                                                                         |
| Project Description Redh                                                                                           | 497 97 90 7 7                                        |                  |                                                                                                                                                                   |                     |                                                                                     |
| e Oper.(LOS)                                                                                                       |                                                      | 0 [              | Des.(N)                                                                                                                                                           | o Plan              | ning Data                                                                           |
| Flow Inputs                                                                                                        | 0040                                                 | 1. //            | D. I. II. E. J. DUE                                                                                                                                               | 0.05                |                                                                                     |
| Volume, V<br>AADT                                                                                                  | 3846                                                 | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                        | 0.95<br>5           | 8 6                                                                                 |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                             |                                                      | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                    |                     | in in an                                                                            |
| Calculate Flow Adjus                                                                                               | stments                                              | 2 2 K 44         | 7 5 6 4 5 70<br>7 55 72 8 64 8 8 8 100 100 100 100 100 100 100 100 1                                                                                              | and the same of the | was to the second                                                                   |
| $f_{p}$                                                                                                            | 1.00                                                 | 1 11 44 21       | ER                                                                                                                                                                | 1.2                 |                                                                                     |
| E <sub>T</sub>                                                                                                     | 1.5                                                  |                  | $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_R-1)]$                                                                                                                          | 1)] 0.976           |                                                                                     |
| Speed Inputs                                                                                                       |                                                      |                  | Calc Speed Adj and                                                                                                                                                | FFS                 |                                                                                     |
| Lane Width                                                                                                         | 12.0                                                 | ft               |                                                                                                                                                                   |                     |                                                                                     |
| Rt-Side Lat. Clearance                                                                                             | 6.0                                                  | ft -             | f <sub>LW</sub>                                                                                                                                                   | 0.0                 | mph                                                                                 |
| Number of Lanes, N                                                                                                 | 2                                                    |                  | f <sub>LC</sub>                                                                                                                                                   | 0.0                 | mph                                                                                 |
| Total Ramp Density, TRD                                                                                            | 0.50                                                 | ramps/mi         | TRD Adjustment                                                                                                                                                    | 1.8                 | mph                                                                                 |
| FFS (measured)                                                                                                     |                                                      | mph              | FFS                                                                                                                                                               | 73.6                | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                      | 75.4                                                 | mph              |                                                                                                                                                                   |                     | -                                                                                   |
| LOS and Performance                                                                                                | e Measures                                           |                  | Design (N)                                                                                                                                                        |                     |                                                                                     |
| Operational (LOS)                                                                                                  |                                                      |                  | Design (N) Design LOS                                                                                                                                             |                     |                                                                                     |
| $V_p = (V \text{ or DDHV}) / (PHF \times N)$                                                                       | V x f <sub>HV</sub> 2075                             | pc/h/ln          | $v_p = (V \text{ or DDHV}) / (PHF x)$                                                                                                                             | N x f               |                                                                                     |
| (f <sub>p</sub> )                                                                                                  |                                                      |                  | x f <sub>p</sub> )                                                                                                                                                | пV                  | pc/h/ln                                                                             |
| 3                                                                                                                  | 62.2                                                 | mph              | s                                                                                                                                                                 |                     | mph                                                                                 |
| $D = v_p / S$                                                                                                      | 33.4                                                 | pc/mi/ln         | $D = v_p / S$                                                                                                                                                     |                     | pc/mi/ln                                                                            |
| LOS                                                                                                                | . D                                                  |                  | Required Number of Lane                                                                                                                                           | s, N                |                                                                                     |
| Glossary                                                                                                           |                                                      |                  | Factor Location                                                                                                                                                   |                     |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  LOS - Level of service  speed  DDHV - Directional design h | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | /<br>flow speed  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 | , 11-13             | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

Copyright © 2012 University of Florida, All Rights Reserved HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:49 PM

| , 10 m                                                                                                         | BASIC FR                                             | LEWAY SE          | GMENTS WORKSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EET,                                    | in the second                                                                        |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                            | ***                                                  | 7.04 4.           | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er payar ye                             | 8 11 11 12 1 W                                                                       |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                         | HG<br>CIMA<br>23/07/2013<br>PM Peak                  | 7 m               | Highway/Direction of Tra<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | all Interchange                                                                      |
| Project Description Redl                                                                                       | hill Safety Study                                    | /                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J. 18 4 9                               |                                                                                      |
| 9 Oper.(LOS)                                                                                                   | WIND I F WIND                                        | 0 [               | Des.(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o Pla                                   | anning Data                                                                          |
| Flow Inputs                                                                                                    |                                                      | ×                 | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | *                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K                                                                  | 3007                                                 | veh/h<br>veh/day  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | · · · · · ·                                                                          |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                               |                                                      | veh/h             | General Terrain:<br>Grade % Length<br>Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                      |
| Calculate Flow Adjus                                                                                           | stments                                              |                   | to the matter of the control of the | n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *** ** * ** * * * * * * * * * * * * *                                                |
| f <sub>p</sub>                                                                                                 | 1.00                                                 | economy en result | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                     |                                                                                      |
| E <sub>T</sub>                                                                                                 | 1.5                                                  |                   | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1)] 0.976                              |                                                                                      |
| Speed Inputs                                                                                                   |                                                      |                   | Calc Speed Adj and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFS                                     |                                                                                      |
| Lane Width                                                                                                     | 12.0                                                 | ft                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       |                                                                                      |
| Rt-Side Lat. Clearance                                                                                         | 6.0                                                  | ft                | f <sub>LW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                     | mph                                                                                  |
| Number of Lanes, N                                                                                             | 2                                                    |                   | f <sub>LC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                     | mph                                                                                  |
| Total Ramp Density, TRD                                                                                        | 0.50                                                 | ramps/mi          | TRD Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                     | mph                                                                                  |
| FFS (measured)                                                                                                 |                                                      | mph               | FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.6                                    | mph                                                                                  |
| Base free-flow Speed,<br>BFFS                                                                                  | 75.4                                                 | mph               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.0                                    | трт                                                                                  |
| LOS and Performanc                                                                                             | e Measures                                           |                   | Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                      |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x I  x f <sub>p</sub> )                                 | N x f <sub>HV</sub> 1622<br>70.7                     | pc/h/ln<br>mph    | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x f <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x N x f <sub>HV</sub>                   | pc/h/ln                                                                              |
| $D = v_p / S$                                                                                                  | 22.9                                                 | pc/mi/ln          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | mph                                                                                  |
| .OS                                                                                                            | С                                                    | ,                 | D = v <sub>p</sub> / S<br>Required Number of Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es, N                                   | pc/mi/ln                                                                             |
| Glossary                                                                                                       |                                                      |                   | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                      |
| N - Number of lanes  / - Hourly volume  / - Flow rate  OS - Level of service  peed  DHV - Directional design h | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | y<br>flow speed   | E <sub>R</sub> - Exhibits 11-10, 11-1<br>E <sub>T</sub> - Exhibits 11-10, 11-1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibit<br>11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1, 11-13                                | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:49 PM

| ini w kest.                                                                                                                    | BASIC FRE                                    | EWAY SE                                | GMENTS WORKSHEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 32                                  | ૧૧૬ મુક્ત કે મુક્ત કે સ્ટાર્ટ્સ                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                            |                                              |                                        | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * * * * * * * * * * * * * * * * * * * |                                                                                     |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                         | HG<br>CIMA<br>23/07/2013<br>AM Peak          |                                        | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 1SB Mainline<br>I Interchange                                                       |
|                                                                                                                                | ill Safety Study                             |                                        | 5 (NI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIT.                                  | Die                                                                                 |
| G Oper (LOS)  Flow Inputs                                                                                                      |                                              | Q L                                    | Des.(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q Plar                                | nning Data                                                                          |
| Volume, V<br>AADT                                                                                                              | 2194                                         | veh/h<br>veh/day                       | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.95<br>5                             | e jele a                                                                            |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                   |                                              | veh/h                                  | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>Level<br>mi                      |                                                                                     |
| Calculate Flow Adjus                                                                                                           | tments                                       |                                        | NO DESCRIPTION OF THE PERSON O |                                       | or of the secondary and                                                             |
| f <sub>p</sub>                                                                                                                 | 1.00<br>1.5                                  | ************************************** | $E_{R}$ $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                   | E 100 10 10 10 10 10 10 10 10 10 10 10 10                                           |
| Speed Inputs                                                                                                                   | 7.10                                         | *                                      | Calc Speed Adj and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 97.5 M 37 TO 6 30 50 50 50 50 50 50 50 50 50 50 50 50 50                            |
| ane Width                                                                                                                      | 12.0                                         | ft                                     | Caro Opeca / taj ana i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                     |
| Rt-Side Lat. Clearance Number of Lanes, N                                                                                      | 6.0                                          | ft                                     | f <sub>LW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                   | mph<br>mph                                                                          |
| Total Ramp Density, TRD                                                                                                        | 0.50                                         | ramps/mi<br>mph                        | TRD Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                   | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                                  | 75.4                                         | mpḥ                                    | FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.6                                  | mph                                                                                 |
| LOS and Performance                                                                                                            | e Measures                                   |                                        | Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                     |
| Operational (LOS)  /p = (V or DDHV) / (PHF x N  (fp)                                                                           | N x f <sub>HV</sub> 789                      | pc/h/ln                                | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N x f <sub>HV</sub>                   | pc/h/ln                                                                             |
| S = v <sub>p</sub> / S<br>-OS                                                                                                  | 75.0<br>10.5<br>A                            | mph<br>pc/mi/ln                        | x f <sub>p</sub> )<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , N                                   | mph<br>pc/mi/ln                                                                     |
| Glossary                                                                                                                       |                                              |                                        | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                     |
| N - Number of lanes  / - Hourly volume  / <sub>p</sub> - Flow rate  LOS - Level of service  speed  DDHV - Directional design h | S - Speed D - Density FFS - Free- BFFS - Bas | y<br>flow speed                        | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:50 PM

|                                                                                    |                                                      |                  | 1                                                                                                                                                                      |                     |                                                                                     |
|------------------------------------------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|
| General Information                                                                |                                                      |                  | Site Information                                                                                                                                                       | t Mai 1             |                                                                                     |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period             | HG<br>CIMA<br>23/07/2013<br>PM Peak                  |                  | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                 |                     | 1SB Mainline<br>I Interchange                                                       |
| Project Description Redh                                                           | ill Safety Study                                     |                  |                                                                                                                                                                        | 1                   |                                                                                     |
| e Oper.(LOS)                                                                       |                                                      | 0 0              | Des.(N)                                                                                                                                                                | <sub>0</sub> Plar   | nning Data                                                                          |
| Flow Inputs                                                                        |                                                      |                  |                                                                                                                                                                        | *                   | я .                                                                                 |
| Volume, V<br>AADT                                                                  | 2770                                                 | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                             | 0.95<br>5           | (8/ 18/                                                                             |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D       |                                                      | .veh/h           | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                         | 0<br>Level<br>mi    |                                                                                     |
| Calculate Flow Adjus                                                               | tments                                               | nel " ne. 1876   | i I. Karasa arenena i — Hae arenefaka                                                                                                                                  | L. J. L.A.          | See a season                                                                        |
| f <sub>p</sub> E <sub>T</sub>                                                      | 1.00<br>1.5                                          | The Argument     | $E_R$ $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                     | 1.2<br>10.976       | a a menanga manan                                                                   |
| Speed Inputs                                                                       |                                                      |                  | Calc Speed Adj and F                                                                                                                                                   |                     |                                                                                     |
| ane Width                                                                          | 12.0                                                 | ft               | Care Opeca Aaj and I                                                                                                                                                   | 10                  |                                                                                     |
| Rt-Side Lat. Clearance                                                             | 6.0                                                  | ft               | f                                                                                                                                                                      | 0.0                 | manh                                                                                |
| Number of Lanes, N                                                                 | 3                                                    | 10               | f <sub>LW</sub>                                                                                                                                                        | 0.0                 | mph                                                                                 |
| Total Ramp Density, TRD                                                            | 0.50                                                 | ramps/mi         | f <sub>LC</sub><br>TRD Adjustment                                                                                                                                      | 1.8                 | mph                                                                                 |
| FFS (measured)                                                                     | 0.00                                                 | mph              |                                                                                                                                                                        |                     | mph                                                                                 |
| Base free-flow Speed,                                                              | 75.4                                                 | mph .            | FFS                                                                                                                                                                    | 73.6                | mph                                                                                 |
| OS and Performance                                                                 | e Measures                                           |                  | Design (N)                                                                                                                                                             |                     |                                                                                     |
| Operational (LOS)                                                                  | d v f                                                |                  | <u>Design (N)</u><br>Design LOS                                                                                                                                        |                     |                                                                                     |
| $y_p = (V \text{ or DDHV}) / (PHF \times NG)$                                      |                                                      | pc/h/ln          | $v_p = (V \text{ or DDHV}) / (PHF x) $<br>$x f_p$                                                                                                                      | N x f <sub>HV</sub> | pc/h/ln                                                                             |
| S / C                                                                              | 75.0                                                 | mph              | s                                                                                                                                                                      |                     | mph                                                                                 |
| $v = v_p / S$                                                                      | 13.3                                                 | pc/mi/ln         | $D = v_p / S$                                                                                                                                                          |                     | pc/mi/ln                                                                            |
| .OS                                                                                | В                                                    |                  | Required Number of Lanes,                                                                                                                                              | N                   |                                                                                     |
| Blossary                                                                           |                                                      |                  | Factor Location                                                                                                                                                        |                     |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  OS - Level of service peed | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | y<br>flow speed  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1<br>11-3 |                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:50 PM

|                                                                                                                           | BASIC FRE                                            | EEWAY SE                   | <b>GMENTS WORKSHEE</b>                                                                                                      | T                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,                                                                                                                         | 2,10.0.1.1                                           | , ,                        |                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| General Information                                                                                                       | <sup>2</sup>                                         | 1 t = 10 . v               | Site Information                                                                                                            | 1. T.                                    | a take stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                    | HG<br>CIMA<br>23/07/2013<br>AM Peak                  |                            | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                      | Dartnall                                 | NB Mainline<br>Interchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Project Description Redh                                                                                                  | ill Safety Study                                     |                            |                                                                                                                             | * ** * * * * * * * * * * * * * * * * * * |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e Oper.(LOS)                                                                                                              |                                                      | 0 [                        | Des.(N)                                                                                                                     | o Plar                                   | nning Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Flow Inputs                                                                                                               |                                                      |                            | 10 4                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                         | 3798                                                 | veh/h<br>veh/day<br>veh/h  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length    | 0.95<br>5<br>0<br>Level<br>mi            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e e e e e e e e e e e e e e e e e e e                                                                                     |                                                      |                            | Up/Down %                                                                                                                   | *                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculate Flow Adjus                                                                                                      | tments                                               | 597 <b>59</b> 52 3 3       | one consideration of the same                                                                                               | ak elecigi                               | en de sales a la companya de la companya del companya del companya de la companya |
| fp                                                                                                                        | 1.00                                                 |                            | E                                                                                                                           | 1.2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E <sub>T</sub> .                                                                                                          | 1.5                                                  |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Speed Inputs                                                                                                              |                                                      |                            | Calc Speed Adj and                                                                                                          | FFS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Width                                                                                                                | 12.0                                                 | ft                         |                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rt-Side Lat. Clearance                                                                                                    | 6.0                                                  | ft                         | f <sub>LW</sub>                                                                                                             | 0.0                                      | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number of Lanes, N                                                                                                        | 2                                                    |                            | f <sub>LC</sub>                                                                                                             | 0.0                                      | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Ramp Density, TRD                                                                                                   | 0.50                                                 | ramps/mi                   | TRD Adjustment                                                                                                              | 1.8                                      | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                                                           | 75.4                                                 | mph<br>mph                 | FFS                                                                                                                         | 73.6                                     | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LOS and Performance                                                                                                       | e Measures                                           |                            | Design (N)                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times NG)$ $(f_p)$ $S$ $D = V_p / S$ $LOS$                           |                                                      | pc/h/ln<br>mph<br>pc/mi/ln | Design (N) Design LOS  v <sub>p</sub> = (V or DDHV) / (PHF x x f <sub>p</sub> ) S D = v <sub>p</sub> / S                    | N x f <sub>HV</sub>                      | pc/h/ln<br>mph<br>pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                           |                                                      |                            | Required Number of Lanes                                                                                                    | , N                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Glossary                                                                                                                  |                                                      |                            | Factor Location                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N - Number of lanes / - Hourly volume / <sub>p</sub> - Flow rate LOS - Level of service speed DDHV - Directional design h | S - Speed<br>D - Densit<br>FFS - Free-<br>BFFS - Bas | /<br>flow speed            | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits 11-3 | 11-13                                    | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:50 PM

| H. J. S. P. J.                                                             | BASIC FRE                                      | EWAY SE                             | GMENTS WORKSHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EI.               | <del>ye in erigis</del> i                                                           |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                            |                                                | in any in                           | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4. 19.5.        | * * * * * * * * * * * * * * * * * * *                                               |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                         | HG<br>CIMA<br>23/07/2013<br>PM Peak            |                                     | Highway/Direction of Trav<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 5NB Mainline<br>Il Interchange                                                      |
| Project Description Redh                                                                                       | ill Safety Study                               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                     |
| e Oper.(LOS)                                                                                                   |                                                | 0 E                                 | Des.(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o Pla             | nning Data                                                                          |
| Flow Inputs                                                                                                    |                                                |                                     | A CONTRACTOR OF THE PARTY OF TH |                   |                                                                                     |
| Volume, V<br>AADT                                                                                              | 2719                                           | veh/h<br>veh/day                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95<br>5         | Base at the                                                                         |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                         |                                                | veh/h                               | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>Level<br>mi  | and gry                                                                             |
| Calculate Flow Adjus                                                                                           | tments                                         | AN ACCUTANCE OF ACC                 | The second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | considerate and an action                                                           |
| f <sub>p</sub>                                                                                                 | 1.00                                           | Seed the Descent Co. H. Ostockie Co | E <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2               | g property and a second of the                                                      |
| E <sub>T</sub>                                                                                                 | 1.5                                            |                                     | $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_R-1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)] 0.976         |                                                                                     |
| Speed Inputs                                                                                                   | ,                                              |                                     | Calc Speed Adj and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FFS               |                                                                                     |
| ane Width                                                                                                      | 12.0                                           | ft                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                     |
| Rt-Side Lat. Clearance                                                                                         | 6.0                                            | ft                                  | f <sub>LW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0               | mph                                                                                 |
| Number of Lanes, N                                                                                             | 2                                              |                                     | f <sub>LC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0               | mph                                                                                 |
| Total Ramp Density, TRD                                                                                        | 0.50                                           | ramps/mi                            | TRD Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8               | mph                                                                                 |
| FFS (measured)                                                                                                 |                                                | mph                                 | FFS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.6              | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                  | 75.4                                           | mph                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                     |
| OS and Performance                                                                                             | e Measures                                     |                                     | Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                     |
| Operational (LOS)                                                                                              |                                                |                                     | <u>Design (N)</u><br>Design LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                     |
| $f_p = (V \text{ or DDHV}) / (PHF \times N)$                                                                   |                                                | pc/h/ln                             | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N \times f_{HV}$ | pc/h/ln                                                                             |
| 5                                                                                                              | 72.6                                           | mph                                 | s p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | mph                                                                                 |
| $0 = v_p / S$                                                                                                  | 20.2                                           | pc/mi/ln                            | $D = v_p / S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | pc/mi/ln                                                                            |
| OS                                                                                                             | С                                              |                                     | Required Number of Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s, N              |                                                                                     |
| Blossary                                                                                                       |                                                |                                     | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                     |
| I - Number of lanes  / - Hourly volume  p - Flow rate  OS - Level of service  peed  DHV - Directional design h | S - Speed D - Density FFS - Free-f BFFS - Base | low speed                           | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

Copyright © 2012 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:50 PM

| 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                        | BASIC FRE                                    | EWAY SE                                   | GMENTS WORKSHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ET                    |                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|
| General Information                                                                                            | n tay te                                     | ·<br>·*********************************** | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | de la recentación de la composición de |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                         | HG<br>CIMA<br>23/07/2013<br>AM Peak          |                                           | Highway/Direction of Tra<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 5SB Mainline<br>Il Interchange                                                                                 |
| Project Description Redh                                                                                       |                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z                     |                                                                                                                |
| e Oper.(LOS)                                                                                                   |                                              | 0 [                                       | Des.(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o Pla                 | nning Data                                                                                                     |
| Flow Inputs                                                                                                    | V.                                           | 1.4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                |
| Volume, V<br>AADT                                                                                              | 2669                                         | veh/h<br>veh/day                          | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95<br>5             | × × ×                                                                                                          |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                   |                                              | veh/h                                     | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 39373 (393 )) 3801 |                                                                                                                |
| Calculate Flow Adjus                                                                                           | tments                                       |                                           | n a la a contra de la contra del la contra de la contra del la |                       | et de la version en                                                        |
| f <sub>p</sub>                                                                                                 | 1.00                                         |                                           | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                   |                                                                                                                |
| E <sub>T</sub>                                                                                                 | 1.5                                          |                                           | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                |
| Speed Inputs                                                                                                   |                                              |                                           | Calc Speed Adj and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFS                   |                                                                                                                |
| Lane Width                                                                                                     | 12.0                                         | ft                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                |
| Rt-Side Lat. Clearance                                                                                         | 6.0                                          | ft                                        | f <sub>LW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                   | mph                                                                                                            |
| Number of Lanes, N                                                                                             | 3                                            |                                           | f <sub>LC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                   | mph                                                                                                            |
| Total Ramp Density, TRD                                                                                        | 0.50                                         | ramps/mi                                  | TRD Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                   | mph                                                                                                            |
| FFS (measured)                                                                                                 |                                              | mph                                       | FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.6                  | mph                                                                                                            |
| Base free-flow Speed,<br>BFFS                                                                                  | 75.4                                         | mph                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                |
| LOS and Performance                                                                                            | e Measures                                   |                                           | Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                |
| Operational (LOS)  /p = (V or DDHV) / (PHF x N                                                                 | N x f <sub>HV</sub> 960                      | pc/h/ln                                   | Design (N)<br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x N x f <sub>HV</sub> | n. n.                                                                                                          |
| (f <sub>p</sub> )                                                                                              | 75.0                                         | la la                                     | x f <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | pc/h/ln                                                                                                        |
| S - v / S                                                                                                      | 75.0                                         | mph                                       | ຮ້                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | mph                                                                                                            |
| $D = V_p / S$                                                                                                  | 12.8                                         | pc/mi/ln                                  | $D = v_p / S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | pc/mi/ln                                                                                                       |
| OS                                                                                                             | В                                            |                                           | Required Number of Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es, N                 |                                                                                                                |
| Glossary                                                                                                       |                                              |                                           | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | ***************************************                                                                        |
| N - Number of lanes  / - Hourly volume  / - Flow rate  OS - Level of service  peed  DHV - Directional design h | S - Speed D - Density FFS - Free- BFFS - Bas | flow speed                                | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 11-13              | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1                            |

Copyright © 2012 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:51 PM

| Analyst Agency or Company Date Performed Analysis Time Period Project Description Redhi  | 4015                         | veh/h<br>veh/day | Site Information  Highway/Direction of Trave From/To Jurisdiction Analysis Year  Des.(N)  Peak-Hour Factor, PHF %Trucks and Buses, P <sub>T</sub> %RVs, P <sub>R</sub> General Terrain: Grade % Length | Dartnall 2013  O Plan  0.95 5 O Level | SB Mainline<br>Interchange<br>ning Data |
|------------------------------------------------------------------------------------------|------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|
| Oper.(LOS) Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D | 4015                         | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                                                                 | 0.95<br>5<br>0<br>Level               | ning Data                               |
| Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D            |                              | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                                                                 | 0.95<br>5<br>0<br>Level               | ning Data                               |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D               |                              | veh/day          | %Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                                                                                          | 5<br>0<br>Level                       |                                         |
| AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D                                  |                              | veh/day          | %Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                                                                                          | 5<br>0<br>Level                       |                                         |
| Peak-Hr Direction Prop, D                                                                | tments                       | veh/h            | General Terrain:                                                                                                                                                                                       | Level                                 | 3                                       |
|                                                                                          | tments                       |                  | Up/Down %                                                                                                                                                                                              |                                       |                                         |
| Calculate Flow Adjus                                                                     | uncina                       |                  | Fine the experience of the decimal decimal should be because                                                                                                                                           |                                       | and the second of the second of         |
| f <sub>p</sub>                                                                           | 1.00                         |                  | Ė <sub>R</sub>                                                                                                                                                                                         | 1.2                                   | ACTION OF A THE REST OF THE REST        |
| E <sub>T</sub>                                                                           | 1.5                          |                  | $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_R-1)]$                                                                                                                                                               | )] 0.976                              |                                         |
| Speed Inputs                                                                             |                              |                  | Calc Speed Adj and I                                                                                                                                                                                   | FFS                                   |                                         |
| ane Width                                                                                | 12.0                         | ft               |                                                                                                                                                                                                        |                                       | ,                                       |
| Rt-Side Lat. Clearance                                                                   | 6.0                          | ft               | f <sub>LW</sub>                                                                                                                                                                                        | 0.0                                   | mph                                     |
| Number of Lanes, N                                                                       | 3                            |                  | f <sub>LC</sub>                                                                                                                                                                                        | 0.0                                   | mph                                     |
| otal Ramp Density, TRD                                                                   | 0.50                         | ramps/mi         | TRD Adjustment                                                                                                                                                                                         | 1.8                                   | mph                                     |
| FS (measured)                                                                            |                              | mph              | FFS                                                                                                                                                                                                    | 73.6                                  | mph                                     |
| Base free-flow Speed,<br>BFFS                                                            | 75.4                         | mph              |                                                                                                                                                                                                        |                                       |                                         |
| OS and Performance                                                                       | e Measures                   |                  | Design (N)                                                                                                                                                                                             | (A)                                   |                                         |
| Operational (LOS)<br>r <sub>p</sub> = (V or DDHV) / (PHF x N                             | N x f <sub>HV</sub>          |                  | Design (N) Design LOS                                                                                                                                                                                  | NI C                                  | ,                                       |
| (f <sub>p</sub> )                                                                        | 72.8                         | pc/h/ln<br>mph   | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                                                                                            | N X T <sub>HV</sub>                   | pc/h/ln                                 |
| ) = v <sub>p</sub> / S                                                                   | 19.8                         | pc/mi/ln         | S                                                                                                                                                                                                      |                                       | mph                                     |
| OS                                                                                       | C                            | po///////        | D = v <sub>p</sub> / S<br>Required Number of Lanes                                                                                                                                                     | . N                                   | pc/mi/ln                                |
| Blossary                                                                                 |                              |                  | Factor Location                                                                                                                                                                                        |                                       |                                         |
| I - Number of lanes                                                                      | S - Speed                    |                  |                                                                                                                                                                                                        |                                       | f Fulling 22.0                          |
| / - Hourly volume                                                                        | D - Densit                   |                  | E <sub>R</sub> - Exhibits 11-10, 11-12                                                                                                                                                                 |                                       | f <sub>LW</sub> - Exhibit 11-8          |
| - Flow rate                                                                              | FFS - Free-                  |                  | E <sub>T</sub> - Exhibits 11-10, 11-11,                                                                                                                                                                |                                       | f <sub>LC</sub> - Exhibit 11-9          |
| OS - Level of service                                                                    | BFFS - Bas                   |                  | f <sub>p</sub> - Page 11-18                                                                                                                                                                            |                                       | TRD - Page 11-1                         |
| peed<br>DHV - Directional design h                                                       | and the lands of the same of | 30               | LOS, S, FFS, v <sub>p</sub> - Exhibits <sup>2</sup>                                                                                                                                                    | ı 1-Z,                                |                                         |

Copyright © 2012 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.41

Generated: 18/09/2013 2:51 PM

| Company   Cilida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Info                | I W                              | INIA CLIM                   | KAMP JUN             | CHONS       | VORKSHEE                                    | ΞΓ.,                 | and the second                                    | * * 25.1            | 2 2 2 marks                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|-----------------------------|----------------------|-------------|---------------------------------------------|----------------------|---------------------------------------------------|---------------------|----------------------------------------|--|
| Company   Cilida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | rmation                          | THE STREET OF               | 7 (A.M.)             | Site Info   | mation                                      |                      |                                                   | 31.4                | · · · · · · · · · · · · · · · · · · ·  |  |
| alpis   Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyst<br>Agency or Compar |                                  | 35                          | Ĵι                   | inction     | 79 1911 IN                                  | (6)                  | ng Ramp                                           | E 80.05             | 6 · 19                                 |  |
| Stream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | od AM                            | Peak Hour                   |                      |             |                                             |                      | MAR "                                             | * **.               |                                        |  |
| Stream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | Redhill Safety                   | Study                       |                      | 1 10 2 10   |                                             | 1997 A               |                                                   |                     |                                        |  |
| Ramp Number of Laines, N   Acceleration Lane Length, L <sub>A</sub>   500   Deceleration Lane Length, L <sub>A</sub>   500   Deceleration Lane Length, L <sub>A</sub>   500   Deceleration Lane Length, L <sub>B</sub>   500   Deceleration Length, L <sub>B</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  | Face access Man             | where of Lanca N     |             |                                             |                      |                                                   | · ·                 | -                                      |  |
| No   Off   Preway Volume, V <sub>F</sub>   2880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jpstream Adj Ram            | p                                |                             |                      | 1           |                                             |                      |                                                   |                     | eam Adj                                |  |
| Freeway Volume, V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o Yes o C                   | n                                | 1                           |                      | 500         |                                             |                      |                                                   | o. Yes              | o On                                   |  |
| ### Ramp Volume, V <sub>R</sub> ### A440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e No o C                    | off .                            | 1                           |                      | 2000        |                                             |                      |                                                   | e No                | o Off                                  |  |
| Samp Free-Flow Speed, S <sub>FR</sub>   35.0   Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | up = ft                     |                                  | 4 3 A A                     | 100                  | 36 760      | *L .                                        | <i>14</i> 1          | ·.                                                | L <sub>down</sub> = | ft                                     |  |
| Samp Free-Flow Speed, S <sub>R</sub>   35.0   Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /,,= veh/                   | h                                |                             |                      | 70.0        |                                             |                      |                                                   | V <sub>D</sub> =    | veh/h                                  |  |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.65 4 4.1                  |                                  |                             | 111                  | 35.0        |                                             | San Lare A.          | ·                                                 |                     | A. 10                                  |  |
| Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conversion                  | to pc/h Un                       | der Base                    | Conditions           |             |                                             |                      | e s. ::e                                          |                     |                                        |  |
| Marge Areas   Diverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (pc/h).                     |                                  | PHF                         | Terrain              | %Truck      | %Rv                                         | f <sub>HV</sub>      | f <sub>p</sub>                                    | v = V/PH            | Fxf <sub>HV</sub> xf <sub>p</sub>      |  |
| Merge Areas   Diverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reeway                      | 2880 .                           | 0.94                        | Level                | 0           | 0                                           | 1.000                | 1.00                                              |                     | 3064                                   |  |
| Merge Areas   Diverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ramp                        | 440                              | 0.94                        | Level                | 0           | 0                                           | 1.000                | 1.00                                              | *                   | 468                                    |  |
| Estimation of v <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DownStream-                 |                                  |                             | 7 P 4 1 5 25         | e alle de e | A 22 E15 A 511                              |                      | ** *** **                                         |                     | an area or a m                         |  |
| V <sub>12</sub> = V <sub>F</sub> (P <sub>FM</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  | Merge Areas                 |                      |             |                                             |                      | verge Areas                                       |                     |                                        |  |
| Equation 13-6 or 13-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stimation o                 | f v <sub>12</sub>                |                             |                      |             | Estimation                                  | n of v <sub>12</sub> |                                                   |                     |                                        |  |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | V <sub>12</sub> = V <sub>F</sub> | (P <sub>FM</sub> )          |                      |             |                                             | V <sub>12</sub> = V  | ' <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | P <sub>FD</sub>     |                                        |  |
| 1,000 using Equation (Exhibit 13-6)   Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EQ =                        | (Equ                             | ation 13-6 o                | r 13-7)              |             | L <sub>EQ</sub> = (Equation 13-12 or 13-13) |                      |                                                   |                     |                                        |  |
| Or   Or   Or   Or   Or   Or   Capacity   Or   Or   Or   Or   Or   Or   Or   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sub>FM</sub> =             | 1.000                            | using Equa                  | tion (Exhibit 13-6)  |             |                                             | u                    | sing Equatio                                      | n (Exhibit 1        | 3-7)                                   |  |
| S v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 =                        | 3064                             | pc/h                        |                      |             |                                             | р                    | c/h                                               |                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or V <sub>av34</sub>        |                                  |                             | 13-14 or 13-17)      |             |                                             |                      |                                                   | 3-14 or 13-1        | 17)                                    |  |
| pc/h (Equation 13-16, 13-18, or 13-19)  If Yes, $V_{12a} = pc/h$ (Equation 13-16, 13-18, or 13-19)  Is pacity Checks  Actual Capacity LOS F?  V <sub>F</sub> Actual Capacity LOS F?  V <sub>F</sub> Exhibit 13-8  V <sub>F</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  Is pacity Checks  V <sub>F</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-10  Is pacity Checks  V <sub>F</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  V <sub>R</sub> Exhibit 13-8  Exhibit 13-8  V <sub>R</sub> Exhibit 13-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                  |                             |                      |             |                                             |                      |                                                   |                     |                                        |  |
| Table   Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                  |                             | 3-16, 13-18, or      |             | no/h /Faustion 12 16 12 19 an               |                      |                                                   |                     |                                        |  |
| Actual Capacity LOS F? Actual Capacity LOS F? $V_{FO}$ 3532 Exhibit 13-8 $V_{FO} = V_{F} - V_{R}$ Exhibit 13-8 $V_{R}$ Exhibit 13-9 $V_{R}$ Exhibit 13-10 $V_{R}$ Exhib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                  | )                           |                      |             |                                             | 13-                  |                                                   |                     |                                        |  |
| $V_{FO} = V_{F} - V_{R} $ Exhibit 13-8 $V_{R} = V_{F} - V_{R} $ Exhibit 13-8 $V_{R} = V_{R} - V_{R} = V_{R} - V_{R} $ Exhibit 13-8 $V_{R} = V_{R} - V_{R} = V_{R} - V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sapacity Cite               | _                                | T .                         | Panacity             | 108 F2      | T Capacity                                  |                      | Can                                               | acity               | 1 109 E2                               |  |
| $V_{FO} = V_F - V_R \qquad \qquad \text{Exhibit } 13-8 \qquad \qquad V_{R} \qquad \qquad \text{Exhibit } 13-8 \qquad \qquad V_{R} \qquad \qquad \text{Exhibit } 13-8 \qquad V_{R} \qquad \qquad V_{R} \qquad V_{$ |                             | Actual                           |                             | Sapacity             | LOOT:       | V-                                          | Actual               |                                                   |                     | 1001:                                  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vro                         | 3532                             | Exhibit 13-8                |                      | No          |                                             | / <sub>R</sub>       |                                                   |                     |                                        |  |
| The intering Merge Influence Area and Actual Max Desirable Violation? Actual Max Desirable Violation? Actual Max Desirable Violation? Actual Max Desirable Violation? $V_{R12}  3532  \text{Exhibit } 13-8  4600:\text{All}  \text{No}  V_{12}  \text{Exhibit } 13-8  \text{Exhibit } 13-2  \text{Exhibit } 13-12  \text{Exhibit } 13-12 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO                          | 117-20-20-20                     |                             |                      |             | V <sub>R</sub>                              |                      |                                                   |                     |                                        |  |
| $V_{R12}$ 3532       Exhibit 13-8       4600:All       No $V_{12}$ Exhibit 13-8         vel of Service Determination (if not F)       Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 \text{ v}_R + 0.0078 \text{ V}_{12} - 0.00627 \text{ L}_A$ $D_R = 4.252 + 0.0086 \text{ V}_{12} - 0.009 \text{ L}_D$ $D_R = 29.7 \text{ (pc/mi/ln)}$ $D_R = (\text{pc/mi/ln})$ $D_R = D \text{ (Exhibit 13-2)}$ $D_R = D \text{ (Exhibit 13-2)}$ $D_R = D \text{ (Exhibit 13-2)}$ $D_R = D \text{ (Exhibit 13-12)}$ $D_R = D \text{ (Exhibit 13-11)}$ $D_R = D \text{ (Exhibit 13-12)}$ $D_R = D \text{ (Exhibit 13-11)}$ $D_R = D \text{ (Exhibit 13-12)}$ $D_R = D \text{ (Exhibit 13-11)}$ $D_R = D \text{ (Exhibit 13-12)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | low Enterin                 | g Merge In                       | fluence A                   | rea                  | -           | Flow Enter                                  | ring Diverg          | ge Influen                                        | ce Area             |                                        |  |
| vel of Service Determination (if not F)       Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 \text{ v}_R + 0.0078 \text{ V}_{12} - 0.00627 \text{ L}_A$ $D_R = 4.252 + 0.0086 \text{ V}_{12} - 0.009 \text{ L}_D$ $D_R = 29.7 \text{ (pc/mi/ln)}$ $D_R = (\text{pc/mi/ln})$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | Actual                           | Max                         | Desirable            | Violation?  |                                             | Actual               | Max Desir                                         | able                | Violation?                             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>R12</sub>            | 3532                             | Exhibit 13-8                | 4600:All             | No          |                                             |                      |                                                   |                     |                                        |  |
| = 29.7 (pc/mi/ln)  D <sub>R</sub> = (pc/mi/ln)  D <sub>R</sub> = (pc/mi/ln)  D <sub>R</sub> = (pc/mi/ln)  D <sub>S</sub> = (Exhibit 13-2)  D <sub>S</sub> = (Exhibit 13-2)  D <sub>S</sub> = (Exhibit 13-12)  D <sub>S</sub> = (Exhibit 13-12)  D <sub>S</sub> = (mph (Exhibit 13-12)  D <sub>S</sub> = (mph (Exhibit 13-12)  D <sub>S</sub> = (mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |                             |                      |             |                                             |                      |                                                   |                     | F)                                     |  |
| Columbit 13-2    Columbit 13-2    Columbit 13-2    Columbit 13-2    Columbit 13-2    Columbit 13-2    Columbit 13-11    Columbit 13-11    Columbit 13-12    Columbit 13-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                  | 0.0078 V <sub>12</sub> - 0. | 00627 L <sub>A</sub> |             | $D_R$                                       | = 4.252 + 0.0        | 0086 V <sub>12</sub> - 0.0                        | 009 L <sub>D</sub>  |                                        |  |
| Speed Determination   Speed Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R = 29.7 (pc/n              | ni/ln)                           |                             | ·Z'                  |             | 1.00                                        |                      |                                                   |                     | ē.                                     |  |
| = 0.419 (Exibit 13-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                  |                             |                      |             | LOS = (Exh                                  | ibit 13-2)           |                                                   |                     |                                        |  |
| 58.3 mph (Exhibit 13-11) S <sub>R</sub> = mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | peed Deteri                 | nination                         |                             | * .                  | ies.        |                                             | ermination           | 1                                                 |                     | * * * ** · · · · · · · · · · · · · · · |  |
| 58.3 mph (Exhibit 13-11) S <sub>R</sub> = mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s = 0.419 (Exi              | bit 13-11)                       |                             |                      |             | D <sub>s</sub> = (Exhib                     | oit 13-12)           |                                                   |                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                  |                             |                      |             |                                             |                      |                                                   |                     |                                        |  |
| N/A mph (Exhibit 13-11) $S_0^{=}$ mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  |                             |                      |             | $S_0 = mph (1)$                             | Exhibit 13-12)       |                                                   |                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | (Exhibit 13-13)                  |                             |                      |             | S = mph (                                   | Exhibit 13-13)       |                                                   |                     |                                        |  |

|                                                                                          |                                  |                             |                              | - 1.000 mm                              | 9 E E E E E E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | range a ser e                        | THE RESERVE       |                                      | (6+ 3+ 3+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ |
|------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|-------------------|--------------------------------------|--------------------------------------------------|
|                                                                                          | ****                             | 3.5                         |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      |                   |                                      |                                                  |
|                                                                                          |                                  | . *                         |                              |                                         | 3 x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * 1                           |                                      |                   | 2 1                                  |                                                  |
| <u></u>                                                                                  |                                  |                             |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | August 1                             |                   |                                      |                                                  |
| 1.1                                                                                      |                                  | MPS AND                     | RAMP JUN                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ET                            | - Xx 12 - x                          | to the same       | <del> </del>                         |                                                  |
| General Infor                                                                            |                                  |                             |                              | Site Info                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      |                   |                                      |                                                  |
| Analyst                                                                                  | HG:                              |                             |                              | reeway/Dir of Tunction                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HVP 1EB-Ente                  | ring Ramp                            | · / /             | 7.                                   |                                                  |
| Agency or Company<br>Date Performed                                                      |                                  | 7/2013                      |                              | risdiction                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EB Entering amilton           | 3.0                                  |                   | 9                                    |                                                  |
| Analysis Time Period                                                                     |                                  | Peak Hour                   | *                            | nalysis Year                            | t + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 013                           |                                      | 2 (2) a           | * *                                  |                                                  |
| Project Description                                                                      |                                  |                             |                              | naryola roar                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | * 41 98 98                           | x                 |                                      |                                                  |
| nputs                                                                                    |                                  |                             | 17.                          |                                         | 5 2 20 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 7                                    |                   |                                      |                                                  |
|                                                                                          |                                  | Freeway Num                 | ber of Lanes, N              | 2                                       | 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.47 V.                       |                                      | D                 |                                      | 77                                               |
| Jpstream Adj Ramp                                                                        |                                  | Ramp Numbe                  |                              | 4                                       | 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | a so i                               | Downstre<br>Ramp  | am Adj                               |                                                  |
| o Yes o Or                                                                               | 1                                |                             | ane Length, L                | 500                                     | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | ,                                    |                   | _                                    |                                                  |
|                                                                                          |                                  | 1                           | • •                          | SUU                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      | o Yes             | o On                                 |                                                  |
| e No a Of                                                                                | f                                |                             | ane Length L <sub>D</sub>    | 1.<br>(2-2-7                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      | e No              | o Off                                |                                                  |
| 1                                                                                        | * * * *                          | Freeway Volu                | or acre                      | 2864                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KI (K                         | 2 × 500                              |                   | ft .                                 | 18 3F B                                          |
| <sub>up</sub> = ft                                                                       |                                  | Ramp Volume                 | 13                           | 529                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      | Ldown —           | н                                    |                                                  |
| /u = veh/h                                                                               | 5-60                             | 10 0000                     | -Flow Speed, S <sub>FF</sub> | 70.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      | V <sub>D</sub> .= | veh/h                                |                                                  |
| u – veimi                                                                                | 1 ()                             | Ramp Free-Fl                | ow Speed, S <sub>FR</sub>    | 35.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      |                   |                                      |                                                  |
| Conversion to                                                                            | o pc/h Uni                       | der Base (                  | Conditions                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1 .0 00.00                           |                   |                                      |                                                  |
| (pc/h)                                                                                   | (Veh/hr)                         | PHF                         | Terrain                      | %Truck                                  | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>HV</sub>               | f <sub>p</sub>                       | v = V/PH          | F x f <sub>HV</sub> x f <sub>p</sub> | 1                                                |
| reeway                                                                                   | 2864                             | 0.94                        | Level                        | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000                         | 1.00                                 |                   | 3047                                 | +                                                |
| Ramp                                                                                     | 529                              | 0.94                        | Level                        | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000                         | 1.00                                 |                   | 563                                  | -                                                |
| JpStream                                                                                 | 020                              | 0.04                        | LCVCI                        | -                                       | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000                         | 1,00                                 | +                 | 000                                  | 4                                                |
| DownStream                                                                               | /                                |                             |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      |                   |                                      | 1                                                |
|                                                                                          |                                  | Merge Areas                 |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1                           | Diverge Areas                        |                   |                                      | ]                                                |
| stimation of                                                                             | V <sub>12</sub>                  |                             |                              |                                         | Estimatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of V <sub>12</sub>          |                                      |                   |                                      |                                                  |
|                                                                                          | V <sub>12</sub> = V <sub>F</sub> | (P-11)                      |                              |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | V <sub>R</sub> + (V <sub>F</sub> - V | n)Pro             |                                      | 1                                                |
| =                                                                                        | 3.55                             | ation 13-6 or               | 13-7)                        |                                         | L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | (Equation 13                         |                   | 3)                                   |                                                  |
| EQ =                                                                                     |                                  |                             | ion (Exhibit 13-6)           |                                         | L <sub>EQ</sub> =<br>P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | using Equati                         |                   |                                      |                                                  |
| FM = '                                                                                   |                                  |                             | (EXINDIC 10-0)               |                                         | P <sub>FD</sub> =<br>V <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | pc/h                                 | CIT (EXHIBIT I    | · . /                                |                                                  |
| 12 =                                                                                     | 3047                             |                             | 12 11 00 10 171              |                                         | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                      | 13.14 0= 12.4     | 7)                                   |                                                  |
| 3 or V <sub>av34</sub>                                                                   |                                  |                             | 13-14 or 13-17)              |                                         | V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | pc/h (Equation                       |                   | ")                                   |                                                  |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,700                                            |                                  |                             |                              |                                         | Is V <sub>3</sub> or V <sub>av34</sub> >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                      |                   |                                      |                                                  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 *                                            |                                  |                             | 16 12 10                     |                                         | Is V <sub>3</sub> or V <sub>av34</sub> >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                      |                   | 2 10                                 |                                                  |
| Yes,V <sub>12a</sub> =                                                                   | pc/n (<br>13-19)                 |                             | -16, 13-18, or               | *                                       | If Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | pc/h (Equatio<br>3-19)               | JII 13-16, 1      | o-10, OF                             |                                                  |
| apacity Che                                                                              |                                  |                             |                              |                                         | Capacity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | - 10/                                |                   |                                      | 1                                                |
| -pasty one                                                                               | Actual                           | C                           | apacity                      | LOS F?                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual                        | C                                    | apacity           | LOS F?                               | Ħ                                                |
|                                                                                          | , iotaai                         | T                           |                              | 1                                       | V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 totadi                      | Exhibit 13                           |                   | 1                                    |                                                  |
|                                                                                          |                                  |                             |                              | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                             | Exhibit 13                           |                   | +                                    |                                                  |
| V <sub>FO</sub> ,                                                                        | 3610                             | Exhibit 13-8                |                              | No                                      | $V_{FO} = V_F - V_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'R                            |                                      |                   |                                      |                                                  |
|                                                                                          |                                  |                             |                              |                                         | $V_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | Exhibit 13                           |                   |                                      |                                                  |
| low Entering                                                                             | Merge In                         | fluence A                   | rea                          |                                         | Flow Ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rina Dive                     |                                      | nce Area          |                                      | †                                                |
| .or Litering                                                                             | Actual                           |                             | Desirable                    | Violation?                              | 1011 11110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Actual                        | Max Des                              |                   | Violation?                           | †                                                |
| V <sub>R12</sub>                                                                         | 3610                             | Exhibit 13-8                | 4600:All                     | No                                      | V <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Exhibit 13-8                         | T                 |                                      | 1                                                |
| evel of Servi                                                                            | 1000000                          |                             |                              |                                         | Level of S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ervice Do                     |                                      | n (if not         | F)                                   | 1                                                |
|                                                                                          |                                  |                             |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                      |                   | 1)                                   | +                                                |
|                                                                                          | 0.00734 v <sub>R</sub> + 0       | .0070 V <sub>12</sub> - 0.0 | OOZI LA                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 4.252 + 0.                  | .0000 V <sub>12</sub> - 0            | L <sub>D</sub>    |                                      |                                                  |
| = 30.2 (pc/mi.                                                                           |                                  |                             |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ni/ln)                        |                                      |                   |                                      |                                                  |
|                                                                                          | 3-2)                             |                             |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ibit 13-2)                    |                                      |                   |                                      |                                                  |
|                                                                                          |                                  | The second second           | A 1 (K. 3)                   | 1                                       | Speed Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | terminatio                    | on                                   | 41                |                                      | 1                                                |
| OS = D (Exhibit 1                                                                        | ination                          | 8/8/ 8/80                   |                              |                                         | opecu ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                      |                   |                                      | 1                                                |
| OS = D (Exhibit 1                                                                        |                                  | K4 470                      |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 13-12)                    |                                      |                   |                                      | 1                                                |
| Speed Determines = 0.430 (Exib                                                           | it 13-11)                        | No. 150                     |                              |                                         | D <sub>s</sub> = (Exhit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bit 13-12)                    |                                      |                   |                                      | 1.                                               |
| OS = D (Exhibit 1  Speed Determ  S = 0.430 (Exib  R = 58.0 mph (E                        | it 13-11)<br>Exhibit 13-11)      | N. 0 4 70                   |                              |                                         | $D_s = (Exhilt S_R = mph ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bit 13-12)<br>(Exhibit 13-12) |                                      |                   |                                      |                                                  |
| DS = D (Exhibit 1    Deed Determ    S = 0.430 (Exib.)   58.0 mph (Exp.)   N/A mph (Exp.) | it 13-11)                        |                             |                              | *                                       | $D_s = (Exhit)$ $S_R = mph (S_0 $ | bit 13-12)                    |                                      |                   |                                      | -                                                |

| General Info                                   | rmation                          |                        | PS AND RAM                    | Site Infor             |                                     | W.C.                     | <u> </u>                 | 1117                             | <del></del>   | All these sees                                  |
|------------------------------------------------|----------------------------------|------------------------|-------------------------------|------------------------|-------------------------------------|--------------------------|--------------------------|----------------------------------|---------------|-------------------------------------------------|
| Analyst                                        |                                  | r                      | Fi                            | reeway/Dir of T        |                                     | RHVP 1EB E               | xiting Ramp              | J. 1. 2. 1                       |               | . ,                                             |
| Agency or Company<br>Date Performed            | CIM. 23/0                        | A-<br>7/2013           | Jı<br>Jı                      | unction<br>urisdiction | 1<br>- 1                            | EB Exiting R<br>lamilton |                          | - X                              | 4 d           | E at sale<br>is a<br>is                         |
| Analysis Time Perio<br>Project Description     |                                  | Peak Hour              | A                             | nalysis Year           |                                     | 2013                     |                          |                                  |               |                                                 |
| Inputs                                         | REGIIII Galety                   | Study                  |                               |                        |                                     |                          |                          |                                  |               |                                                 |
| Upstream Adj F                                 | Ramp                             | 1                      | mber of Lanes, N              | 2                      |                                     |                          | . *                      | Do                               | wnstrea       | am Adj                                          |
| o Yes                                          | On                               | Acceleration           | Lane Length, LA               |                        |                                     |                          |                          | 0                                | Yes           | o On                                            |
| e No d                                         | Off                              | 1                      | Lane Length L <sub>D</sub>    | 500                    | *.                                  |                          |                          |                                  | No            | o Off                                           |
| 5 5 6                                          | 2 5 7                            | Freeway Vo             | lume, V <sub>F</sub>          | 2880                   | 70.0                                |                          |                          |                                  | E 1           |                                                 |
| L <sub>up</sub> = 1                            | ft                               | Ramp Volun             | ne, V <sub>R</sub>            | 454                    |                                     | ,                        | · ·                      | Ldow                             | m =           | ft                                              |
| :                                              | a la /la                         | Freeway Fre            | e-Flow Speed, S <sub>FF</sub> | 70.0                   |                                     |                          |                          | V-                               | =             | veh/h                                           |
| $V_u = V$                                      | reh/h                            | Ramp Free-             | Flow Speed, S <sub>FR</sub>   |                        |                                     |                          | 1 1 Jan 1 1              | D                                |               | VOI 1/11                                        |
| Conversion t                                   | o pc/h Un                        | der Base               | Conditions                    | aly is                 | TE                                  | 59 K 100 KK 601          | ogege all ye             |                                  | D. S. Herrige | 1 44 1                                          |
| (pc/h)                                         | V<br>(Veh/hr)                    | PHF                    | Terrain                       | %Truck                 | %Rv                                 | f <sub>HV</sub>          | f <sub>p</sub>           | v =                              | V/PHF         | x f <sub>HV</sub> x f <sub>p</sub>              |
| Freeway                                        | - 2880                           | - 0.94                 | Level                         | 0                      | 0                                   | 1:000                    | 1.00                     |                                  | 30            | 77.00 TO 100 100 100 100 100 100 100 100 100 10 |
| Ramp                                           | 454                              | 0.94                   | Level                         | 0                      | 0                                   | 1.000                    | 1.00                     |                                  | 48            | A 40 177 A                                      |
| UpStream                                       | 101                              | 0.01                   | 20101                         |                        |                                     | 1.000                    | 1.00                     | _                                |               | -                                               |
| DownStream                                     |                                  | 14 14 mm 4             |                               | es e desse             |                                     |                          |                          |                                  | 9236          |                                                 |
|                                                |                                  | Merge Areas            |                               |                        |                                     |                          | Diverge Are              | as                               |               |                                                 |
| Estimation of                                  | f v <sub>12</sub>                |                        |                               |                        | Estimation                          | on of v <sub>12</sub>    |                          |                                  |               |                                                 |
|                                                | V <sub>12</sub> = V <sub>F</sub> | (P <sub>FM</sub> )     |                               |                        |                                     | V.                       | $_{2} = V_{R} + (V_{F})$ | - V <sub>R</sub> )P <sub>F</sub> | D.            |                                                 |
| L <sub>EQ</sub> =                              | (Equa                            | tion 13-6 o            | r 13-7)                       |                        | L <sub>EQ</sub> =                   |                          | (Equation                | 4.4                              |               | )                                               |
| P <sub>FM</sub> =                              |                                  |                        | (Exhibit 13-6)                |                        | P <sub>FD</sub> =                   |                          | 1.000 using              |                                  |               |                                                 |
| V <sub>12</sub> =                              | pc/h                             |                        |                               |                        | V <sub>12</sub> =                   |                          | 3064 pc/h                |                                  | •             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,         |
| V <sub>3</sub> or V <sub>av34</sub>            | pc/h (                           | Equation 1             | 3-14 or 13-17)                |                        | V <sub>3</sub> or V <sub>av34</sub> |                          | 0 pc/h (Equ              | ation 1                          | 3-14 or       | 13-17)                                          |
| Is $V_3$ or $V_{av34} > 2,70$                  |                                  |                        |                               |                        |                                     | > 2,700 pc/h             | ? o Yes e                |                                  |               | ,                                               |
| Is V <sub>3</sub> or V <sub>av34</sub> > 1.5 * |                                  |                        |                               | ×                      |                                     |                          | o Yes e                  |                                  |               |                                                 |
| If Yes,V <sub>12a</sub> =                      |                                  |                        | 3-16, 13-18, or               |                        | If Yes,V <sub>12a</sub> =           | 12                       | pc/h (Equa               |                                  | 16, 13-       | 18, or 13-                                      |
| Capacity Che                                   |                                  |                        |                               |                        | Capacity                            | Checks                   | 10)                      |                                  |               |                                                 |
|                                                | Actual                           |                        | Capacity                      | LOS F?                 |                                     | Act                      | ual                      | Capacit                          | 1             | LOS F?                                          |
|                                                |                                  |                        |                               |                        | V <sub>F</sub>                      | 306                      | 4 Exhibit                | 13-8                             | 4800          | No                                              |
| V <sub>FO</sub>                                |                                  | Exhibit 13-8           |                               |                        | $V_{FO} = V_F -$                    | V <sub>P</sub> 258       |                          |                                  | 4800          | No                                              |
| ru                                             |                                  |                        | A                             |                        | V <sub>R</sub>                      | 483                      |                          |                                  | 2000          | No                                              |
| Flow Entering                                  | Morgo In                         | fluores                | Aroa                          |                        |                                     |                          | verge Influ              |                                  |               | 1 110                                           |
| Flow Entering                                  | Actual                           |                        | Desirable                     | Violation?             | FIOW LINE                           | Actual                   | Max De                   |                                  | irea          | Violation?                                      |
| V <sub>R12</sub>                               | riotdai                          | Exhibit 13-8           |                               | violation:             | V <sub>12</sub>                     | 3064                     | Exhibit 13               |                                  | 00:All        | No                                              |
| Level of Serv                                  | ico Doforn                       |                        |                               |                        |                                     |                          | Determina                |                                  |               |                                                 |
| $D_R = 5.475 + 0.0$                            |                                  |                        |                               |                        |                                     |                          | - 0.0086 V <sub>12</sub> |                                  |               | /                                               |
| , ,                                            |                                  | 0.0076 V <sub>12</sub> | - 0.00021 LA                  | 3.                     |                                     |                          | 0.0000 V <sub>12</sub>   | - 0.009                          | -D            |                                                 |
| $D_R = (pc/mi/ln)$                             | ×7.                              |                        |                               |                        | **                                  | (pc/mi/ln)               | 2)                       |                                  |               |                                                 |
| OS = (Exhibit 1                                |                                  |                        | ·                             |                        |                                     | Exhibit 13-2             |                          |                                  |               |                                                 |
| Speed Detern                                   | nination                         |                        |                               |                        | Speed De                            |                          |                          |                                  |               |                                                 |
| M <sub>S</sub> = (Exibit 13                    | 3-11)                            |                        |                               |                        |                                     | 1 (Exhibit 1             |                          |                                  |               |                                                 |
| "S (LABIC IC                                   |                                  |                        |                               |                        | 0 - 500                             | 1 /F. 1-11               | ait 12 12)               |                                  |               |                                                 |
|                                                | ibit 13-11)                      |                        |                               |                        | $S_{R} = 56.8$                      | mph (Exhib               | 113-12)                  |                                  |               |                                                 |

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The second SE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                        |                               | · · · · · ·  | 1.44.64                             | Life 15°        | Too or to Company           |                     | essa<br>In Tonium                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-------------------------------|--------------|-------------------------------------|-----------------|-----------------------------|---------------------|------------------------------------|
| Conversion for port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -111                | 1 a 3a d               |                               |              |                                     | E A             | 1.0                         | da tr<br>Grania     |                                    |
| Conversion for port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | es es es               |                               |              | Large Walk.                         |                 |                             |                     |                                    |
| Padyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | are the al          | RAM                    | PS AND RAI                    | IP JUNCT     | IONS WO                             | RKSHEET         | ALCO CONT                   | 7                   |                                    |
| Agency of Company   Child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rmation             |                        | eritaria en en                |              |                                     |                 | V v et englis e<br>e e      |                     | 1                                  |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Agency or Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y CIM.              | A .                    | J.                            | unction      | . 1                                 | EB Exiting Ram  |                             |                     | ** ** ** **                        |
| Project Description   REShill Safety Study   Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The state of the s |                     |                        | (A) (A) (A)                   |              |                                     |                 |                             |                     |                                    |
| Dispersion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        | A                             | naiysis Year |                                     | 2013            |                             |                     |                                    |
| Upstream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - TALOHIN GUICTY    | Ciddy                  |                               |              | * * *A * **                         |                 | **** * * * * * * *          |                     | 91 91                              |
| a Yes o On Present Capacity L <sub>A</sub> Deceleration Lane Length, L <sub>A</sub> Deceleration Lane Length L <sub>D</sub> 500 Freeway Volume, V <sub>F</sub> 2864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp                |                        |                               | 2            | **                                  |                 |                             |                     | am Adj                             |
| Freeway Volume, V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On On               |                        |                               |              |                                     |                 |                             |                     | 0 On                               |
| Freeway Volume, V <sub>F</sub>   2864   498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Off                 | Deceleration           | Lane Length L <sub>D</sub>    | 500          |                                     |                 |                             |                     |                                    |
| Variety of Variety o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Freeway Vo             | lume, V <sub>F</sub>          | 2864         | ****                                |                 | W 000 W                     | 8 140               |                                    |
| Variety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L <sub>up</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft                  | Ramp Volun             | ne, V <sub>R</sub>            | 498          | ¥ ¥                                 |                 | 4 7                         | L <sub>down</sub> = | ft                                 |
| Conversion to pc/h Under Base Conditions   Conversion to pc/h Under Base Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \ \ \ \ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oh/h                | Freeway Fre            | e-Flow Speed, S <sub>FF</sub> | 70.0         | .5                                  |                 |                             | V <sub>D</sub> =    | veh/h                              |
| Cipch   V   Volhinh   PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>u</sub> = V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en/n                | Ramp Free-             | Flow Speed, S <sub>FR</sub>   | 35.0         |                                     |                 | a considi                   | to the same         | VGIVII                             |
| Cipch   V   Volhinh   PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o pc/h Uni          | der Base               | Conditions                    |              | 1.00                                | 1.38   2        |                             | 2-175               |                                    |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                   | 1                      |                               | %Truck       | %Rv                                 | f <sub>HV</sub> | f <sub>p</sub>              | v = V/PHF           | x f <sub>HV</sub> x f <sub>p</sub> |
| Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2864                | 0.94                   | Level                         | : 0··        | 0                                   | 1.000 : :       | 7:- 1:00                    | 30                  | 47                                 |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 498                 | 0.94                   | Level                         | 0            | 0                                   | 1.000           | 1.00                        | 53                  | 30                                 |
| Merge Areas   Estimation of V12   Estimation of V12   V12 = VR + (VF - VR) FD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 |                             |                     | ,                                  |
| Estimation of $v_{12}$   Estimation of $v_{12}$   $v_{12} = v_F (P_{FM})$   $v_{12} = v_F (P_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Merge Areas            |                               |              |                                     |                 | Diverge Areas               |                     |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | merge Areas            |                               |              | Estimation                          |                 | Diverge Areas               |                     |                                    |
| $\begin{array}{c} L_{\text{EO}} = & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | /D )                   |                               |              |                                     |                 | -\/ + (\/ \/                | \D                  |                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                        | - 12 7)                       |              | _                                   |                 |                             |                     |                                    |
| $ \begin{array}{c} V_{12} = & \text{pc/h} \\ V_3 \text{ or V}_{av34} + & \text{pc/h} \left( \text{Equation } 13\text{-}14 \text{ or } 13\text{-}17 \right) \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{pc/h} \left( \text{Equation } 13\text{-}14 \text{ or } 13\text{-}17 \right) \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_3 \text{ or V}_{av34} + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0 \text{ Yes }_0 \text{ No} \\ \text{Is V}_4 \text{ or V}_4 + & \text{2,700 pc/h? }_0  Y$ | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                        |                               |              | -                                   |                 |                             |                     |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Equation               | (EXHIDIC 13-0)                |              | t                                   |                 |                             | lation (Exnit       | DIT 13-7)                          |
| $   \text{Is V}_3 \text{ or V}_{\text{av34}} > 2,700 \text{ pc/h? }_0 \text{ Yes }_0 \text{ No} \\   \text{Is V}_3 \text{ or V}_{\text{av34}} > 1.5  ^*\text{V}_{12/2} = 0 \text{ Yes }_0 \text{ No} \\   \text{Is V}_3 \text{ or V}_{\text{av34}} > 1.5  ^*\text{V}_{12/2} = 0 \text{ Yes }_0 \text{ No} \\   \text{If Yes,V}_{12a} = 13-19)                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                   | Equation 1             | 3.14 or 13.17)                |              |                                     |                 |                             | n 12 11 or          | 10 17)                             |
| $   \text{Is V}_3 \text{ or V}_{a;34} > 1.5 * \text{V}_{12} / 2 \text{ o Yes o No} \\ \text{pc/h (Equation 13-16, 13-18, or 13-19)} \\   \text{Is V}_3 \text{ or V}_{a;34} > 1.5 * \text{V}_{12} / 2 \text{ o Yes o No} \\ \text{pc/h (Equation 13-16, 13-18, or 13-19)} \\   \text{Fyes,V}_{12a} =                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 15/19/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                        | 5-14 01 15-17)                |              | 20 2000                             |                 |                             | 11 13-14 01         | 13-17)                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                        |                               |              |                                     |                 |                             |                     |                                    |
| Tes, V <sub>12a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        | 3-16, 13-18, or               |              | 75 5050                             | · -             |                             | 13-16, 13-          | 18. or 13-                         |
| $V_{FO} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 | 9)                          |                     |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                        |                               | ·            | Capacity                            |                 |                             |                     |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual              |                        | Capacity                      | LOS F?       | 17                                  |                 |                             |                     |                                    |
| $ \begin{array}{ c c c c c c } \hline Flow Entering Merge Influence Area & Flow Entering Diverge Influence Area \\ \hline Flow Entering Diverge Influence Area & Flow Entering Diverge Influence Area \\ \hline Flow Entering Diverge Influence Area & Flow Entering Diverge Influence Area \\ \hline Flow Entering Diverge Influence Area & Flow Entering Diverge Influence & Flow Entering Diverge Inf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 |                             |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Exhibit 13-8           |                               | `            | THE R. P. LEWIS CO., LANSING, MICH. |                 |                             |                     |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 |                             |                     | No                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                        |                               |              | Flow Ente                           |                 |                             |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual              |                        | Desirable                     | Violation?   |                                     |                 |                             |                     |                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        | (10 × 10)                     | L            |                                     |                 |                             |                     |                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 |                             |                     | )                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0.0078 V <sub>12</sub> | - 0.00627 L <sub>A</sub>      |              |                                     | -               | .0086 V <sub>12</sub> - 0.0 | noa r <sup>d</sup>  |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               | ž.           | W100 E                              |                 |                             |                     |                                    |
| $M_{\rm S} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              |                                     |                 |                             |                     |                                    |
| $S_R^{=}$ mph (Exhibit 13-11) $S_R^{=}$ 56.7 mph (Exhibit 13-12) $S_0^{=}$ mph (Exhibit 13-11) $S_0^{=}$ mph (Exhibit 13-13) $S_0^{=}$ mph (Exhibit 13-13) $S_0^{=}$ mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Speed Detern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nination            | ,                      |                               |              |                                     |                 |                             |                     | (4) (7) (8) (7)                    |
| $S_R^{=}$ mph (Exhibit 13-11) $S_R^{=}$ 56.7 mph (Exhibit 13-12) $S_0^{=}$ mph (Exhibit 13-11) $S_0^{=}$ N/A mph (Exhibit 13-12) $S_0^{=}$ mph (Exhibit 13-13) $S_0^{=}$ 56.7 mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M <sub>s</sub> = (Exibit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-11)               |                        |                               |              | $D_{s} = 0.47$                      | 6 (Exhibit 13-  | 12)                         |                     |                                    |
| $S_0$ = mph (Exhibit 13-11) $S_0$ = M/A mph (Exhibit 13-12) $S$ = mph (Exhibit 13-13) $S$ = 56.7 mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                        |                               |              | $S_{R} = 56.7$                      | mph (Exhibit    | 13-12)                      |                     |                                    |
| S = mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                        |                               |              |                                     |                 |                             |                     |                                    |
| Copyright © 2012 University of Florida, All Rights Reserved HCS2010 <sup>TM</sup> Version 6.41 Generated: 18/09/2013. 2:53 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                               |              | S = 56.7                            | mph (Exhibit    | 13-13)                      |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copyright © 2012 Unive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rsity of Florida, A | Il Rights Reser        | ved                           |              | HCS2010 <sup>TM</sup> Ve            | ersion 6.41     | Gene                        | erated: 18/09/2     | 2013. 2:53 PM                      |

|                                               |                  | UNIPS AND                               | RAMP JUN                   |                 |                                                                                                                                       | EEI              | والمستعلمات                  |                                          |                                      |  |
|-----------------------------------------------|------------------|-----------------------------------------|----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|------------------------------------------|--------------------------------------|--|
| General Infor                                 |                  | CAMELLA.                                |                            | Site Info       |                                                                                                                                       |                  |                              | ****                                     |                                      |  |
| Analyst                                       |                  | 1752-111                                | . , F                      | reeway/Dir of T | ravel                                                                                                                                 | RHVP 1WE         | 3-Entering Ramp              | at a state                               | t                                    |  |
| Agency or Company                             | - CIM            | A                                       |                            | unction         |                                                                                                                                       | 1WB Enter        | ing                          |                                          |                                      |  |
| Date Performed                                |                  | 07/2013                                 |                            | urisdiction     | 8 7 8                                                                                                                                 | Hamilton         | 6 K F N                      |                                          |                                      |  |
| Analysis Time Period                          |                  | Peak Hour                               | A                          | nalysis Year    |                                                                                                                                       | 2013             | - 1                          |                                          |                                      |  |
| Project Description                           | Redhill Safety   | Study                                   |                            |                 |                                                                                                                                       |                  |                              |                                          |                                      |  |
| nputs                                         |                  | 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                            |                 |                                                                                                                                       |                  | e of a specime               | - 1                                      | 2 m X                                |  |
| Jpstream Adj Ramp                             |                  | Freeway Num<br>Ramp Number              | ber of Lanes, N            | 2               |                                                                                                                                       |                  |                              | Downstr<br>Ramp                          | eam Adj                              |  |
| o Yes o Or                                    | 1                |                                         | ane Length, L <sub>A</sub> | 500             |                                                                                                                                       |                  | *                            | o Yes                                    | o On                                 |  |
| 9 No 0 Of                                     | f                |                                         | ane Length L <sub>D</sub>  |                 | *                                                                                                                                     |                  |                              | e No                                     |                                      |  |
|                                               |                  | Freeway Volui                           | ne, V <sub>F</sub>         | 2866            | 6 8 (40 (100m)                                                                                                                        |                  | K FEFE                       |                                          |                                      |  |
| <sub>up</sub> = ft                            |                  | Ramp Volume                             | , V <sub>R</sub>           | 435             | *                                                                                                                                     |                  |                              | Ldown _                                  | ft                                   |  |
|                                               | ¥                | Freeway Free-                           | Flow Speed, See            | 70.0            |                                                                                                                                       |                  |                              |                                          | vob/b                                |  |
| $l_{\rm u} = {\rm veh/h}$                     |                  | Ramp Free-Flo                           |                            | 30.0            |                                                                                                                                       | 1                | * 14                         | $V_D =$                                  | veh/h                                |  |
| Conversion to                                 | o nc/h Un        |                                         | 111                        |                 |                                                                                                                                       |                  |                              |                                          | <del></del>                          |  |
| (pc/h)                                        | Λ                | PHF                                     | Terrain                    | %Truck          | %Rv                                                                                                                                   | f <sub>HV</sub>  | f <sub>p</sub>               | v = V/PH                                 | F x f <sub>HV</sub> x f <sub>p</sub> |  |
| 1 - F - 1 - 1                                 | (Veh/hr).        | _0.94                                   |                            |                 | 0                                                                                                                                     |                  | At the same of the same      | ** ***   C.   C.   C.   C.   C.   C.   C |                                      |  |
| reeway                                        | 2866             | _                                       | Level                      | 0               |                                                                                                                                       | 1.000            |                              |                                          | 3049                                 |  |
| Ramp                                          | 435              | 0.94                                    | Level                      | 0               | 0                                                                                                                                     | 1.000            | 1.00                         |                                          | 463                                  |  |
| JpStream<br>DownStream                        |                  | -                                       |                            | -               |                                                                                                                                       | +                |                              | -                                        |                                      |  |
| ownouedin                                     |                  | Merge Areas                             |                            |                 |                                                                                                                                       | - 1              | Diverge Area                 | as                                       | *** *** * *                          |  |
| stimation of                                  |                  |                                         |                            |                 | Estimat                                                                                                                               | ion of v         |                              |                                          |                                      |  |
|                                               |                  | /D )                                    |                            |                 | -                                                                                                                                     |                  |                              | V VD                                     |                                      |  |
|                                               | $V_{12} = V_{F}$ |                                         |                            |                 |                                                                                                                                       | V                | $V_{12} = V_R + (V_F - V_F)$ | 10 10                                    |                                      |  |
| EQ =                                          |                  | ation 13-6 or                           |                            |                 | L <sub>EQ</sub> =                                                                                                                     |                  |                              | 13-12 or 13-                             |                                      |  |
| FM =                                          | 1.000            | using Equati                            | on (Exhibit 13-6)          |                 | PFD =         using Equation (Exhibit 13-7)           V12 =         pc/h           V3 or Vav34         pc/h (Equation 13-14 or 13-17) |                  |                              |                                          |                                      |  |
| 12 =                                          | 3049             | pc/h                                    |                            |                 |                                                                                                                                       |                  |                              |                                          |                                      |  |
| 3 or V <sub>av34</sub>                        | 0 pc/l           | h (Equation 1                           | 3-14 or 13-17)             | į.              |                                                                                                                                       |                  |                              |                                          |                                      |  |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,70  | 0 pc/h? o Ye     | s a No                                  |                            |                 |                                                                                                                                       | > 2,700 pc       | c/h? o Yes o I               | Vα                                       |                                      |  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * |                  |                                         |                            |                 |                                                                                                                                       | 215              | 2/2 o Yes o M                |                                          |                                      |  |
| -                                             |                  |                                         | -16, 13-18, or             |                 | 1                                                                                                                                     |                  |                              | tion 13-16, 1                            | 3-18 or                              |  |
| Yes,V <sub>12a</sub> =                        | 13-19)           |                                         | 10, 10 10, 01              |                 | If Yes,V <sub>12a</sub> =                                                                                                             |                  | 13-19)                       | 1011 10 10, 1                            | 0 10, 01                             |  |
| apacity Che                                   | cks              |                                         |                            |                 | Capacit                                                                                                                               | y Check          | S                            |                                          |                                      |  |
|                                               | Actual           | Ca                                      | pacity                     | LOS F?          |                                                                                                                                       | A                | ctual                        | Capacity                                 | LOS F?                               |  |
|                                               |                  |                                         |                            |                 | V <sub>F</sub>                                                                                                                        |                  | Exhibit :                    | 13-8                                     |                                      |  |
|                                               | 3512             | Exhibit 13-8                            |                            | No              | $V_{FO} = V_{F}$                                                                                                                      | - V <sub>D</sub> | Exhibit '                    | 13-8                                     |                                      |  |
| V <sub>FO</sub>                               | 3312             | EXHIDIC 13-0                            |                            | INO             |                                                                                                                                       | R                | Exhibit                      |                                          | +                                    |  |
|                                               |                  |                                         |                            |                 | $V_R$                                                                                                                                 |                  | 10                           |                                          |                                      |  |
| low Entering                                  | Merge In         | fluence A                               | 'ea                        |                 | Flow En                                                                                                                               | tering D         | iverge Influ                 | ence Area                                | !                                    |  |
|                                               | Actual           | Max D                                   | esirable                   | Violation?      |                                                                                                                                       | Actua            | I Max D                      | esirable                                 | Violation?                           |  |
| V <sub>R12</sub>                              | 3512             | Exhibit 13-8                            | 4600:All                   | No              | V <sub>12</sub>                                                                                                                       |                  | Exhibit 13-                  | 8                                        |                                      |  |
| evel of Servi                                 | ce Detern        | nination (ii                            | not F)                     |                 |                                                                                                                                       | Service          | Determinat                   | ion (if not                              | F)                                   |  |
|                                               |                  | 0.0078 V <sub>12</sub> - 0.00           |                            |                 |                                                                                                                                       |                  | 2 + 0.0086 V <sub>12</sub> - |                                          |                                      |  |
| = 29.5 (pc/mi                                 |                  | 12                                      | A                          |                 |                                                                                                                                       | c/mi/ln)         | 12                           | D                                        |                                      |  |
| DS = D (Exhibit 1                             |                  |                                         |                            |                 |                                                                                                                                       | xhibit 13-2      | 2)                           |                                          |                                      |  |
|                                               |                  |                                         |                            |                 |                                                                                                                                       |                  |                              |                                          |                                      |  |
| peed Determ                                   |                  |                                         | <del></del>                |                 | Speed D                                                                                                                               |                  |                              |                                          |                                      |  |
| s = 0.422 (Exib                               |                  |                                         |                            |                 |                                                                                                                                       | khibit 13-12)    |                              |                                          |                                      |  |
| = 58.2 mph (l                                 | Exhibit 13-11)   |                                         |                            |                 |                                                                                                                                       | h (Exhibit 1     |                              |                                          |                                      |  |
|                                               | Exhibit 13-11)   | 6.                                      |                            |                 | S <sub>0</sub> = mp                                                                                                                   | h (Exhibit 13    | 3-12)                        |                                          |                                      |  |
|                                               | Exhibit 13-13)   | 341                                     |                            |                 | S= mp                                                                                                                                 | h (Exhibit 13    | 3-13)                        |                                          | 190                                  |  |
|                                               |                  |                                         |                            |                 |                                                                                                                                       |                  |                              |                                          |                                      |  |

| The second of the Second                      | RA                               | MPS AND                       | RAMP JUN                     | CTIONS W         | ORKSH                                            | EET                    |                                                   | Last a              | 1.21.4                         |  |
|-----------------------------------------------|----------------------------------|-------------------------------|------------------------------|------------------|--------------------------------------------------|------------------------|---------------------------------------------------|---------------------|--------------------------------|--|
| General Infor                                 |                                  | *** * * * * * * *             |                              | Site Infor       |                                                  |                        |                                                   |                     | 7 m mm                         |  |
| Analyst                                       | HG                               |                               | F                            | reeway/Dir of Ti | avel :                                           | RHVP 1WB-En            | tering Ramp:                                      |                     | * #* ; #                       |  |
| Agency or Company                             | CIM                              | Α -                           | Ju                           | unction          |                                                  | 1WB Entering           | ž.                                                |                     |                                |  |
| Date Performed                                | 23/0                             | 7/2013                        | i a a d                      | urisdiction      | . %                                              | Hamilton               |                                                   | ×                   | 34.3                           |  |
| Analysis Time Period                          | PM I                             | Peak Hour                     | A                            | nalysis Year     |                                                  | 2013                   | * **                                              | fi or fi            |                                |  |
| Project Description                           | Redhill Safety                   | Study                         | 4 74 4                       | - N 1            | **************************************           |                        |                                                   |                     |                                |  |
| nputs                                         |                                  | ***                           |                              |                  | *                                                | 4                      | 75 14 1                                           |                     |                                |  |
| Jpstream Adj Ramp                             |                                  | 1                             | ber of Lanes, N              | 2                |                                                  |                        | *                                                 | Downstre            | eam Adj                        |  |
| o Yes o Or                                    | r .                              | Ramp Number<br>Acceleration L | ane Length, L                | 500              | -                                                | .46                    | .*                                                | Ramp                |                                |  |
| e No o Of                                     | ř.                               |                               | ane Length L <sub>D</sub>    |                  |                                                  |                        |                                                   | o Yes               | o On                           |  |
|                                               |                                  | Freeway Volu                  | me, V <sub>E</sub>           | 3100             |                                                  | oe se                  |                                                   | e No                | o Off                          |  |
| <sub>up</sub> = ft                            | y *                              | Ramp Volume                   |                              | 441              |                                                  | #40 AM 14              | 71.8                                              | L <sub>down</sub> = | ft                             |  |
| ир                                            |                                  |                               | i.s.                         |                  |                                                  |                        |                                                   |                     |                                |  |
| $v_{\rm u} = {\rm veh/h}$                     |                                  |                               | -Flow Speed, S <sub>FF</sub> | 70.0             |                                                  |                        |                                                   | $V_D =$             | veh/h                          |  |
| 4.3 (315.15.1.20)                             |                                  |                               | ow Speed, S <sub>FR</sub>    | 30.0             | 9. 5295                                          |                        |                                                   |                     |                                |  |
| Conversion to                                 | pc/h Un                          | der Base                      | Conditions                   | ** * * * .       | 3.38 %                                           | or one oy and          | ಕ್ಷ ಕ್ರೀಟ್ ಕರ್ನ                                   | ster to             |                                |  |
| (pc/h)                                        | (Veh/hr)                         | PHF                           | Terrain                      | %Truck           | %Rv                                              | f <sub>HV</sub>        | f <sub>p</sub>                                    | v = V/PH            | $F \times f_{HV} \times f_{p}$ |  |
| reeway                                        | 3100                             | 0.94                          | Level                        | 0                | 0                                                | 1.000                  | 1.00                                              |                     | 3298                           |  |
| Ramp                                          | 441                              | 0.94                          | Level                        | 0                | 0                                                | 1.000                  | 1.00                                              |                     | 469                            |  |
| JpStream                                      |                                  |                               |                              |                  |                                                  |                        |                                                   |                     |                                |  |
| ownStream -                                   |                                  | Lange I                       | e kare                       | 100.003          | 1 83934 103                                      |                        | 9 700 51                                          |                     |                                |  |
|                                               |                                  | Merge Areas                   |                              |                  |                                                  |                        | Diverge Areas                                     |                     |                                |  |
| stimation of                                  | V <sub>12</sub>                  |                               |                              |                  | Estimat                                          | ion of v <sub>12</sub> |                                                   |                     |                                |  |
|                                               | V <sub>12</sub> = V <sub>F</sub> | (Pru)                         |                              |                  |                                                  | V42 =                  | V <sub>R</sub> + (V <sub>F</sub> - V <sub>F</sub> | )P <sub>ED</sub>    |                                |  |
| =                                             |                                  | ation 13-6 or                 | 13_7\                        |                  | 1 =                                              | 12                     | (Equation 13-                                     | –                   | (3)                            |  |
| EQ =                                          |                                  |                               |                              |                  | L <sub>EQ</sub> =                                |                        | (a) (b)                                           |                     |                                |  |
| <sub>FM</sub> =                               |                                  |                               | ion (Exhibit 13-6)           |                  | P <sub>FD</sub> =                                |                        | using Equation                                    | on (Exhibit 1       | 3-1)                           |  |
| 12 =                                          | 3298                             |                               |                              |                  | V <sub>12</sub> =                                |                        | pc/h                                              |                     |                                |  |
| <sub>3</sub> or V <sub>av34</sub>             |                                  |                               | 13-14 or 13-17)              |                  | V <sub>3</sub> or V <sub>av34</sub>              |                        | pc/h (Equation 1                                  | 13-14 or 13-1       | 17)                            |  |
| $V_3 \text{ or } V_{av34} > 2,700$            | ) pc/h? <sub>0</sub> Ye          | s e No                        |                              |                  | Is V <sub>3</sub> or V <sub>av</sub>             | 34 > 2,700 pc/h?       | o Yes o No                                        |                     |                                |  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * | V <sub>12</sub> /2 o Yes         | s e No                        |                              |                  | $ls V_3 or V_{av34} > 1.5 * V_{12}/2$ o Yes o No |                        |                                                   |                     |                                |  |
| Yes,V <sub>12a</sub> =                        |                                  | (Equation 13                  | -16, 13-18, or               |                  | If Yes,V <sub>12a</sub> =                        |                        | pc/h (Equatio<br>13-19)                           | n 13-16, 1          | 3-18, or                       |  |
| Capacity Che                                  |                                  |                               |                              |                  | Capacit                                          | y Checks               | .0 .0/                                            |                     |                                |  |
|                                               | Actual                           | T C                           | apacity                      | LOS F?           |                                                  | Actua                  | l Car                                             | pacity              | LOS F?                         |  |
|                                               |                                  |                               |                              |                  | V <sub>F</sub>                                   | 1.0122                 | Exhibit 13-                                       |                     | 1                              |  |
|                                               |                                  |                               |                              |                  |                                                  | 7/                     |                                                   | -                   | -                              |  |
| V <sub>FO</sub>                               | 3767                             | Exhibit 13-8                  |                              | No               | $V_{FO} = V_{F}$                                 | - V <sub>R</sub>       | Exhibit 13-                                       |                     |                                |  |
|                                               |                                  |                               |                              |                  | V <sub>R</sub>                                   | 1                      | Exhibit 13-                                       | -                   |                                |  |
| low Entoring                                  | Marga In                         | fluonoo A                     | roa                          |                  | Elow En                                          | toring Dive            |                                                   | oo Aroo             |                                |  |
| low Entering                                  |                                  |                               | Desirable                    | Violation?       | FIOW EII                                         | Actual                 | erge Influen<br>Max Desi                          |                     | Violation?                     |  |
|                                               | Actual<br>3767                   | Exhibit 13-8                  | 4600:All                     | No No            | V                                                | Actual                 | Exhibit 13-8                                      | lable               | violation?                     |  |
| V <sub>R12</sub>                              |                                  |                               |                              | DVI              | V <sub>12</sub>                                  | 1                      |                                                   | (15                 | <b>-</b>                       |  |
| evel of Servi                                 |                                  |                               |                              |                  |                                                  |                        | eterminatio                                       |                     | <u>r)</u>                      |  |
| $D_R = 5.475 + 0$                             | 0.00734 v <sub>R</sub> + 0       | 0.0078 V <sub>12</sub> - 0.0  | 0627 L <sub>A</sub>          |                  |                                                  | $O_{R} = 4.252 + ($    | 0.0086 V <sub>12</sub> - 0.                       | .009 L <sub>D</sub> |                                |  |
| a = 31.5 (pc/mi.                              | ln)                              |                               |                              |                  | $D_R = (p$                                       | c/mi/ln)               |                                                   |                     |                                |  |
| OS = D (Exhibit 1                             | 3-2)                             |                               |                              |                  | LOS = (E                                         | xhibit 13-2)           |                                                   |                     |                                |  |
| peed Determ                                   |                                  |                               | 7 10                         |                  | Speed D                                          | eterminati             | on                                                | 3: 24               |                                |  |
| s = 0.460 (Exib                               |                                  |                               |                              |                  |                                                  | xhibit 13-12)          |                                                   |                     |                                |  |
|                                               |                                  |                               |                              | 1                |                                                  | h (Exhibit 13-12       | )                                                 |                     |                                |  |
|                                               | Exhibit 13-11)                   |                               |                              | - 1              |                                                  | oh (Exhibit 13-12)     | 2                                                 |                     |                                |  |
|                                               | xhibit 13-11)                    |                               |                              | - 1              |                                                  |                        |                                                   |                     |                                |  |
| = 57.1 mph (E                                 | Exhibit 13-13)                   |                               |                              |                  | S = mp                                           | h (Exhibit 13-13)      | )                                                 |                     |                                |  |
|                                               |                                  | I Rights Reserve              | 3- <b>8</b> 7                |                  | TM                                               | Version 6.41           | 0                                                 |                     | 09/2013 2:55                   |  |

|                                               |                        | RAME                                   | S AND RAN                          | IP JUNCT        | IONS WO                                | RKSHEE                     | Γ                           |                     |                                    |
|-----------------------------------------------|------------------------|----------------------------------------|------------------------------------|-----------------|----------------------------------------|----------------------------|-----------------------------|---------------------|------------------------------------|
| General Info                                  | rmation                |                                        |                                    | Site Info       | mation                                 | -7                         |                             |                     |                                    |
| Analyst                                       | HG                     | * -4.                                  |                                    | reeway/Dir of T | ravel = : - :                          | RHVP 2EB Ex                | iting Ramp                  | eriminati yr        |                                    |
| Agency or Company                             | / CIN                  | ΛA.                                    |                                    | unction         |                                        | 2EB Exiting Ra             | 200                         |                     |                                    |
| Date Performed                                | 23/                    | 07/2013                                | J                                  | urisdiction     | T T                                    | Hamilton                   | •                           |                     | 25 6 9                             |
| Analysis Time Perio                           | d AM                   | Peak Hour                              | A                                  | nalysis Year    | 1                                      | 2013                       |                             | × ' ×               |                                    |
| Project Description                           | REdhill Safet          | y Study                                |                                    |                 | 1 3 3                                  | - 1.94                     | 1.8                         | · '                 | A 7 E                              |
| Inputs                                        |                        | ************************************** |                                    | 7 57 500        | کرند شد منځ و<br>د اند                 |                            |                             | A                   | 100                                |
| Upstream Adj F                                | Ramp                   | 1 11                                   | nber of Lanes, N<br>er of Lanes, N | 2 2             |                                        |                            |                             | Downstrea<br>Ramp   | am Adj                             |
| o Yes                                         | On On                  | Acceleration                           | Lane Length, LA                    | _               |                                        |                            |                             | o Yes               | o On                               |
| e No                                          | Off                    | 1                                      | Lane Length L <sub>D</sub>         | 500             |                                        |                            |                             | в Мо                | o Off                              |
|                                               |                        | Freeway Volu                           |                                    | 2766            | mal v '                                | ***                        | - 75.5%                     | -                   | ft                                 |
| L <sub>up</sub> =                             | ît .                   | Ramp Volum                             | . 15                               | 588             |                                        |                            |                             | L <sub>down</sub> = | IL .                               |
| V = :                                         | eh/h                   | Freeway Free                           | e-Flow Speed, S <sub>FF</sub>      | 70.0            | ž                                      |                            |                             | V <sub>D</sub> =    | veh/h                              |
| $V_u = : V$                                   | en/m                   | Ramp Free-F                            | low Speed, SFR                     | 35.0            |                                        |                            | · A. J.                     | - D                 | VOII/II                            |
| Conversion t                                  | o pc/h Un              | der Base                               | Conditions                         | - F F F F G F   | TO THE STATE OF                        | Maria e e e e              | va _ wegan to               |                     |                                    |
| (pc/h)                                        | V<br>(Veh/hr)          | . PHF                                  | Terrain                            | %Truck          | %Rv                                    | - f <sub>HV</sub>          | . f <sub>p</sub>            | v = V/PHF           | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                       | 2766                   | 0.94                                   | Level                              | 0               | 0                                      | :-1:000:                   | 1.00                        | 29                  | 43                                 |
| Ramp                                          | 588                    | 0.94                                   | Level                              | 0               | 0                                      | 1.000                      | 1.00                        | 62                  | 26                                 |
| JpStream                                      |                        |                                        |                                    |                 |                                        |                            |                             | 4.14                |                                    |
| DownStream ·                                  | E 158.5                | ere to xee                             | Parada e e es                      |                 |                                        |                            | * 1969 th 1999 (46)         |                     | * 14 m 1 1                         |
|                                               |                        | Merge Areas                            |                                    |                 |                                        |                            | Diverge Areas               |                     |                                    |
| stimation of                                  | · V <sub>12</sub>      |                                        |                                    |                 | Estimation                             | on of v <sub>12</sub>      |                             |                     |                                    |
|                                               | $V_{12} = V_{F}$       | (P <sub>FM</sub> )                     |                                    |                 |                                        | V <sub>12</sub>            | $_2 = V_R + (V_F - V_F)$    | R)P <sub>FD</sub>   | ,                                  |
| EQ =                                          | (Equa                  | ation 13-6 or                          | 13-7)                              |                 | L <sub>EQ</sub> =                      |                            | (Equation 13-1              | 2 or 13-13)         | V.                                 |
| FM =                                          | usino                  | Equation (                             | Exhibit 13-6)                      |                 | P <sub>FD</sub> =                      |                            | 1.000 using Eq              |                     |                                    |
| 12 =                                          | pc/h                   | ,                                      | ,                                  | 47              | V <sub>12</sub> =                      |                            | 2943 pc/h                   | addon (Emile        |                                    |
| <sub>3</sub> or V <sub>av34</sub>             | (**)                   | (Equation 12                           | -14 or 13-17)                      |                 |                                        |                            |                             | 10 11               | 40 47)                             |
| 01 (0.000)                                    |                        |                                        | -14 01 13-17)                      |                 | V <sub>3</sub> or V <sub>av34</sub>    |                            | 0 pc/h (Equation            | on 13-14 or         | 13-17)                             |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,70  |                        |                                        |                                    |                 |                                        |                            | O Yes e No                  |                     |                                    |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * |                        |                                        | 10 10 10                           |                 | is V <sub>3</sub> or V <sub>av34</sub> | > 1.5 * V <sub>12</sub> /2 | o Yes e No                  | 10.10.10            |                                    |
| Yes,V <sub>12a</sub> =                        | pc/n (<br>13-19        |                                        | -16, 13-18, or                     |                 | If Yes,V <sub>12a</sub> =              |                            | pc/h (Equation 19)          | 13-16, 13-          | 18, or 13-                         |
| Capacity Che                                  |                        |                                        |                                    |                 | Capacity                               | Checks                     | 10)                         |                     |                                    |
| apacity one                                   | Actual                 | 1 · C                                  | apacity                            | LOS F?          | Jupany                                 | Actu                       | al Ca                       | pacity              | LOS F                              |
|                                               |                        |                                        |                                    |                 | V <sub>F</sub>                         | 2943                       |                             |                     | No                                 |
| V                                             |                        | Exhibit 13-8                           |                                    |                 | $V_{FO} = V_{F}$                       | -                          |                             |                     | No                                 |
| V <sub>FO</sub>                               |                        | LAHIDIL 13-0                           |                                    |                 |                                        |                            |                             |                     | -                                  |
|                                               |                        |                                        |                                    |                 | V <sub>R</sub>                         | 626                        | Exhibit 13-1                |                     | No                                 |
| low Entering                                  |                        |                                        |                                    |                 | Flow Ente                              |                            | erge Influen                |                     |                                    |
| ·                                             | Actual                 | -                                      | Desirable                          | Violation?      |                                        | Actual                     | Max Desirab                 |                     | Violation?                         |
| V <sub>R12</sub>                              |                        | Exhibit 13-8                           |                                    |                 | V <sub>12</sub>                        | 2943                       | Exhibit 13-8                | 4400:All            | No                                 |
| evel of Servi                                 |                        |                                        |                                    |                 | Level of S                             | Service D                  | etermination                | ı (if not F         | )                                  |
| $D_R = 5.475 + 0.0$                           | 00734 v <sub>R</sub> + | 0.0078 V <sub>12</sub> -               | 0.00627 L <sub>A</sub>             |                 | D                                      | R = 4.252 +                | 0.0086 V <sub>12</sub> - 0. | 009 L <sub>D</sub>  |                                    |
| R = (pc/mi/ln)                                |                        |                                        |                                    |                 | $D_{R} = 16.1$                         | (pc/mi/ln)                 |                             |                     |                                    |
| OS = (Exhibit 1                               | 3-2)                   |                                        |                                    |                 |                                        | Exhibit 13-2               | )                           |                     |                                    |
| peed Determ                                   |                        |                                        | - Albanian - A                     |                 | Speed De                               |                            |                             |                     |                                    |
|                                               |                        |                                        |                                    |                 |                                        | 4 (Exhibit 1               |                             |                     |                                    |
| s = (Exibit 13                                |                        |                                        |                                    | 1               |                                        | mph (Exhib                 |                             |                     |                                    |
| •                                             | bit 13-11)             |                                        |                                    |                 |                                        |                            | -                           |                     |                                    |
|                                               | bit 13-11)             | v 100                                  |                                    |                 |                                        | mph (Exhibi                |                             |                     |                                    |
| = mph (Exhi                                   | bit 13-13)             |                                        |                                    |                 | S = 56.4                               | mph (Exhib                 | it 13-13)                   |                     |                                    |
| yright © 2012 Univer                          | rsity of Florida.      | All Rights Reserv                      | ed                                 | 1               | HCS2010 <sup>TM</sup> Ve               | ersion 6.41                | Gene                        | erated: 18/09/2     | 013 2:55                           |

| General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rmation                                                                           | 7.27.7                            | PS AND RAN                    | Site Info              | rmation                                                                                                                                  |                                                                                                          |                                                                                                         |                                      |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                                   |                               |                        |                                                                                                                                          | OLIVO AFRIE                                                                                              | D                                                                                                       |                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                                   |                               | reeway/Dir of T        |                                                                                                                                          | RHVP 2EB Exit                                                                                            |                                                                                                         | 9,7                                  | 4. 2. 2     |
| Agency or Compar<br>Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   | 07/2013                           |                               | unction<br>urisdiction |                                                                                                                                          | 2EB Exiting Ra                                                                                           | пр                                                                                                      | 4.7                                  |             |
| Analysis Time Peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   | Peak Hour                         | 40                            |                        |                                                                                                                                          | Hamilton                                                                                                 | * *                                                                                                     | F                                    | **          |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                   |                               | nalysis Year           |                                                                                                                                          | 2013                                                                                                     |                                                                                                         | <del></del>                          |             |
| nputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REGIIII Salet                                                                     | y Study                           |                               |                        |                                                                                                                                          | <del></del>                                                                                              |                                                                                                         |                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   | Eroovov Nu                        | mber of Lanes, N              | · 2 ·                  | A 7 T                                                                                                                                    |                                                                                                          |                                                                                                         |                                      |             |
| Upstream Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ramp.                                                                             | 7 3 7 2 1                         |                               |                        |                                                                                                                                          |                                                                                                          |                                                                                                         | Downstre                             | am Adj      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   | 1                                 | er of Lanes, N                | 2                      | 100 841 44                                                                                                                               | a                                                                                                        | 1,4                                                                                                     | Ramp                                 |             |
| o Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a On                                                                              | Acceleration                      | Lane Length, LA               |                        |                                                                                                                                          | 14                                                                                                       |                                                                                                         | n Yes                                | o On        |
| e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Off                                                                             | Deceleration                      | Lane Length LD                | 500                    |                                                                                                                                          |                                                                                                          |                                                                                                         |                                      |             |
| 8 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŭ OII .                                                                           | Freeway Vol                       | ume. V-                       | 2214                   |                                                                                                                                          |                                                                                                          |                                                                                                         | e No                                 | o Off       |
| L <sub>up</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft                                                                                | Ramp Volum                        |                               | 1108                   |                                                                                                                                          |                                                                                                          |                                                                                                         | L <sub>down</sub> =                  | ft          |
| _nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                   | 15                            |                        |                                                                                                                                          |                                                                                                          |                                                                                                         | down                                 |             |
| V <sub>u</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | veh/h                                                                             | 1                                 | e-Flow Speed, S <sub>FF</sub> | 70.0                   |                                                                                                                                          | 2                                                                                                        | * T E                                                                                                   | V <sub>D</sub> ≓                     | veh/h       |
| u -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | Ramp Free-F                       | low Speed, S <sub>FR</sub>    | 35.0                   |                                                                                                                                          | <u>.</u>                                                                                                 |                                                                                                         |                                      |             |
| Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to pc/h Un                                                                        | der Base                          | Conditions                    | 1 ,, 194               |                                                                                                                                          |                                                                                                          | 2 - 4 + 24 +                                                                                            | 24 II. S                             | 2 4 2 34 44 |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                 | PHE                               | Terrain.                      | %Truck .               | .%Rv                                                                                                                                     | f <sub>HV</sub> .                                                                                        | f <sub>p</sub>                                                                                          | v = V/PHF                            | vf vf       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Veh/hr)                                                                          |                                   | Torrain,                      |                        | . /01 V                                                                                                                                  | · 'HV-                                                                                                   | 'p                                                                                                      |                                      |             |
| reeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2214                                                                              | 0.94                              | Level                         | 0                      |                                                                                                                                          | 1.000                                                                                                    |                                                                                                         | 23                                   | 55          |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1108                                                                              | 0.94                              | Level                         | 0                      | 0                                                                                                                                        | 1.000                                                                                                    | 1.00                                                                                                    | - 11                                 | 79          |
| JpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 |                                   |                               |                        |                                                                                                                                          |                                                                                                          | 1 1                                                                                                     | -                                    |             |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                   |                               | 10 1000 000            |                                                                                                                                          |                                                                                                          |                                                                                                         |                                      | 4.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 | Merge Areas                       |                               |                        |                                                                                                                                          |                                                                                                          | Diverge Areas                                                                                           |                                      |             |
| stimation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f V <sub>12</sub>                                                                 |                                   |                               |                        | Estimation                                                                                                                               | on of V <sub>12</sub>                                                                                    |                                                                                                         |                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>12</sub> = V <sub>F</sub>                                                  | (P <sub>FM</sub> )                |                               |                        | 1                                                                                                                                        | V <sub>12</sub>                                                                                          | $= V_R + (V_F - V_F)$                                                                                   | )P <sub>ED</sub>                     |             |
| EQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | ation 13-6 or                     | 13-7)                         |                        | L <sub>EQ</sub> =                                                                                                                        |                                                                                                          | (Equation 13-1                                                                                          |                                      | <b>Y</b>    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   | Equation (                        |                               |                        |                                                                                                                                          |                                                                                                          |                                                                                                         |                                      |             |
| FM =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | Lquation (                        | EXHIBIT 15-0)                 |                        | P <sub>FD</sub> =                                                                                                                        |                                                                                                          | .000 using Equ                                                                                          | ווואבן) ווטווגנ                      | JIL 13-1)   |
| 12 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pc/h                                                                              |                                   |                               |                        | V <sub>12</sub> =                                                                                                                        |                                                                                                          | 355 pc/h                                                                                                |                                      |             |
| <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |                                   | 3-14 or 13-17)                |                        | V <sub>3</sub> or V <sub>av34</sub>                                                                                                      |                                                                                                          | pc/h (Equation                                                                                          | n 13-14 or                           | 13-17)      |
| $V_3 \text{ or } V_{av34} > 2,7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 pc/h? 0 Ye                                                                     | s o No                            |                               |                        | Is V <sub>3</sub> or V <sub>av34</sub>                                                                                                   | > 2,700 pc/h?                                                                                            | o Yes e No                                                                                              |                                      |             |
| $V_3 \text{ or } V_{av34} > 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * V <sub>12</sub> /2 o Ye                                                         | s o No                            |                               |                        | Is V <sub>3</sub> or V <sub>av34</sub>                                                                                                   | > 1.5 * V <sub>12</sub> /2                                                                               | o Yes e No                                                                                              |                                      |             |
| Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pc/h (                                                                            | (Equation 13                      | I-16, 13-18, or               |                        | If Yes,V <sub>12a</sub> =                                                                                                                |                                                                                                          | pc/h (Equation                                                                                          | 13-16, 13-                           | 18, or 13   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-19                                                                             | )                                 |                               |                        | 120                                                                                                                                      |                                                                                                          | 9)                                                                                                      |                                      |             |
| apacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ecks                                                                              |                                   |                               |                        | Capacity                                                                                                                                 | Checks                                                                                                   |                                                                                                         |                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actual                                                                            | (                                 | Capacity                      | LOS F?                 |                                                                                                                                          | Actua                                                                                                    | Ca                                                                                                      | pacity                               | LOSF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                 |                                   |                               |                        | V <sub>F</sub>                                                                                                                           | 2355                                                                                                     | Exhibit 13-8                                                                                            | 4800                                 | No          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                 | Exhibit 13-8                      |                               | I                      | $V_{FO} = V_{F}$                                                                                                                         | V <sub>R</sub> 1176                                                                                      | Exhibit 13-8                                                                                            | 4800                                 | No          |
| V <sub>EO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                                   |                               | 1                      | V <sub>R</sub>                                                                                                                           | 1179                                                                                                     | Exhibit 13-10                                                                                           | 0.5.00                               |             |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                                   |                               |                        |                                                                                                                                          |                                                                                                          |                                                                                                         |                                      | No          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   | <u> </u>                          |                               |                        | 1                                                                                                                                        |                                                                                                          |                                                                                                         | ce Area                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                 |                                   |                               |                        | Flow Ente                                                                                                                                |                                                                                                          |                                                                                                         |                                      |             |
| low Enterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g Merge In                                                                        | Max                               | I <i>rea</i><br>Desirable     | Violation?             |                                                                                                                                          | . Actual                                                                                                 | Max Desirab                                                                                             | le                                   |             |
| low Enterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actual                                                                            | Max<br>Exhibit 13-8               | Desirable                     | Violation?             | V <sub>12</sub>                                                                                                                          | Actual 2355                                                                                              | Max Desirab<br>Exhibit 13-8                                                                             | le<br>4400:All                       | No          |
| low Enterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actual                                                                            | Max<br>Exhibit 13-8               | Desirable                     | Violation?             | V <sub>12</sub>                                                                                                                          | Actual 2355                                                                                              | Max Desirab                                                                                             | le<br>4400:All                       | No          |
| low Entering  V <sub>R12</sub> evel of Serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actual<br>vice Determ                                                             | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub><br>Level of S                                                                                                            | . Actual<br>2355<br>Service De                                                                           | Max Desirab<br>Exhibit 13-8                                                                             | le<br>4400:All<br><b>n (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actual  vice Determ .00734 v <sub>R</sub> +                                       | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub><br>Level of S                                                                                                            | 2355<br>Service De<br>R = 4.252 + 0                                                                      | Max Desirab<br>Exhibit 13-8<br>etermination                                                             | le<br>4400:All<br><b>n (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv O <sub>R</sub> = 5.475 + 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Actual  vice Determ .00734 v R +                                                  | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub> Level of S  D <sub>F</sub> D <sub>R</sub> = 11.0                                                                         | Actual 2355 Service De R = 4.252 + 0 (pc/mi/ln)                                                          | Max Desirab<br>Exhibit 13-8<br>etermination                                                             | le<br>4400:All<br><b>n (if not F</b> | No          |
| low Entering $V_{R12}$ evel of Serv $D_{R} = 5.475 + 0.$ $= (pc/mi/ln)$ $S = (Exhibit)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual  /ice Determ .00734 v <sub>R</sub> +                                       | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | $V_{12}$ Level of S $D_{R} = 11.0$ LOS = B (E                                                                                            | . Actual 2355 Service De 3 = 4.252 + (c) (pc/mi/ln) Exhibit 13-2)                                        | Max Desirab<br>Exhibit 13-8<br>etermination<br>0.0086 V <sub>12</sub> - 0.0                             | le<br>4400:All<br><b>a (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv $D_R = 5.475 + 0.6$ $C_R = (pc/mi/ln)$ $C_R = (Exhibit)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actual  /ice Determ .00734 v <sub>R</sub> +                                       | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub> Level of S  D <sub>R</sub> = 11.0 LOS = B (E  Speed De                                                                   | Actual 2355 Service De R = 4.252 + ( pc/mi/ln) Exhibit 13-2)                                             | Max Desirab Exhibit 13-8 Etermination .0086 V <sub>12</sub> - 0.0                                       | le<br>4400:All<br><b>a (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv O <sub>R</sub> = 5.475 + 0. c = (pc/mi/ln OS = (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual  vice Determ .00734 v <sub>R</sub> + n) 13-2)  mination                    | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub> Level of S  D <sub>R</sub> = 11.0 LOS = B (E  Speed De                                                                   | . Actual 2355 Service De 3 = 4.252 + (c) (pc/mi/ln) Exhibit 13-2)                                        | Max Desirab Exhibit 13-8 Etermination .0086 V <sub>12</sub> - 0.0                                       | le<br>4400:All<br><b>a (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv O <sub>R</sub> = 5.475 + 0.  (a = (pc/mi/ln OS = (Exhibit peed Deterr (b = (Exibit 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual  vice Determ .00734 v <sub>R</sub> +  n) 13-2) mination 3-11)              | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub> Level of S D <sub>R</sub> = 11.0 LOS = B (E Speed De D <sub>S</sub> = 0.53                                               | Actual 2355 Service De R = 4.252 + ( pc/mi/ln) Exhibit 13-2)                                             | Max Desirab Exhibit 13-8 Etermination .0086 V <sub>12</sub> - 0.0                                       | le<br>4400:All<br><b>a (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv D <sub>R</sub> = 5.475 + 0. R = (pc/mi/ln DS = (Exhibit peed Determ E = mph (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual  vice Determ .00734 v <sub>R</sub> + 11 13-2)  mination 3-11) nibit 13-11) | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | $V_{12}$ Level of S $D_{R} = 11.0$ LOS = B (E  Speed De $D_{s} = 0.53$ $S_{R} = 55.0$                                                    | Actual 2355 Service De R = 4.252 + ( (pc/mi/ln) Exhibit 13-2) Stermination 4 (Exhibit 13 mph (Exhibit 13 | Max Desirab Exhibit 13-8 Etermination 0.0086 V <sub>12</sub> - 0.0  0.0086 V <sub>12</sub> - 12) 13-12) | le<br>4400:All<br><b>a (if not F</b> | No          |
| V <sub>R12</sub> evel of Serv D <sub>R</sub> = 5.475 + 0. R = (pc/mi/ln DS = (Exhibit peed Deterr R = (Exhibit 1: R = mph (Exh | Actual  vice Determ .00734 v <sub>R</sub> +  n) 13-2) mination 3-11)              | Max<br>Exhibit 13-8<br>mination ( | Desirable  if not F)          | Violation?             | V <sub>12</sub> Level of S  D <sub>R</sub> = 11.0 LOS = B (E  Speed De  D <sub>s</sub> = 0.53 S <sub>R</sub> = 55.0 S <sub>0</sub> = N/A | Actual 2355 Service De R = 4.252 + ( pc/mi/ln) Exhibit 13-2) Stermination 4 (Exhibit 13                  | Max Desirab Exhibit 13-8  etermination 1.0086 V <sub>12</sub> - 0.0  Dn 1-12) 13-12) 13-12)             | le<br>4400:All<br><b>a (if not F</b> |             |

| General Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mation                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PS AND RA                                              | Site Info                                    |                                                                                                                             | y                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| Analyst<br>Agency or Company<br>Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HG<br>CIN<br>23/                                                         | 07/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in a                                                   | Freeway/Dir of T<br>Junction<br>Jurisdiction | ravel                                                                                                                       | RHVP 2WB<br>2WB Exiting<br>Hamilton                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ramp                                                                                                  | 724 *                                                 |                       |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | Analysis Year                                |                                                                                                                             | 2013                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | 1                                                     |                       |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REdhill Safet                                                            | ty Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                              |                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * F                                                                                                   |                                                       | 9                     |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              |                                                                                                                             | -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       | <u> </u>              |
| Upstream Adj Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 4                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mber of Lanes, N<br>er of Lanes, N                     | 3                                            |                                                                                                                             |                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | Downstre<br>Ramp                                      | am Adj                |
| o Yes o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | On                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Length, L <sub>A</sub> Lane Length L <sub>D</sub> |                                              |                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | 0 Yes                                                 | o On                  |
| e No o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Off                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 500                                          |                                                                                                                             | 140                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | в No                                                  | o Off                 |
| L <sub>up</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 210                                                                    | Freeway Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 3075                                         | * *                                                                                                                         |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | <br>I =                                               | ft                    |
| _up II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | Ramp Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.7                                                    | 462                                          |                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | L <sub>down</sub> =                                   | 10                    |
| V <sub>II</sub> = ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h/h                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e-Flow Speed, S <sub>FI</sub>                          | F 70.0                                       | w -                                                                                                                         |                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | V <sub>D</sub> =                                      | veh/h                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | Ramp Free-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | low Speed, S <sub>FR</sub>                             | 35.0                                         |                                                                                                                             | 5.                                                                                           | 1 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | ,                                                     | 1 100000              |
| Conversion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pc/h Un                                                                  | der Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conditions                                             |                                              |                                                                                                                             |                                                                                              | J 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 4. 1. 4                                               | 4                     |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>(Veh/hr)                                                            | PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terrain                                                | %Truck                                       | %Rv                                                                                                                         | - · · f <sub>HV</sub> -                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f <sub>p</sub>                                                                                        | v = N/bHE                                             | x f <sub>HV</sub> x   |
| reeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3075                                                                     | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level:                                                 | 0:                                           | 0                                                                                                                           | 1.000.                                                                                       | - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1:00 ;;;;                                                                                            | ·:: ::::::-32                                         | 27.1                  |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 462                                                                      | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                                                  | 0.                                           | 0                                                                                                                           | 1.000                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                  | 4                                                     | 91                    |
| JpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              |                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | ¥ :40                                                 |                       |
| ownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | Mayra Ayeas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 12000100                                     |                                                                                                                             | 1                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATTENDED NO                                                                                           | *** IMI OF R. S. S.                                   |                       |
| stimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | Merge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                              | Estimation                                                                                                                  | on of w                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erge Areas                                                                                            |                                                       |                       |
| Sumation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | Esumano                                                                                                                     |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{12} = V_{F}$                                                         | (P <sub>FM</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                              |                                                                                                                             | V                                                                                            | $_{12} = V_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R + (VF - VR                                                                                          | P <sub>FD</sub>                                       |                       |
| EQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Equa                                                                    | ation 13-6 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13-7)                                                  |                                              | L <sub>EQ</sub> =                                                                                                           |                                                                                              | (Eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uation 13-1                                                                                           | 2 or 13-13                                            | )                     |
| <sub>-M</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | using                                                                    | Equation (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exhibit 13-6)                                          |                                              | P <sub>FD</sub> =                                                                                                           |                                                                                              | 0.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | using Equ                                                                                             | ation (Exhi                                           | bit 13-7)             |
| 12 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | V <sub>12</sub> =                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pc/h                                                                                                  | <b>X</b>                                              | ,                     |
| or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h                                                                     | (Equation 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -14 or 13-17)                                          |                                              | V <sub>3</sub> or V <sub>av34</sub>                                                                                         |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pc/h (Equat                                                                                           | ion 13-14                                             | or 13-17              |
| V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | Is V <sub>3</sub> or V <sub>av34</sub>                                                                                      | > 2.700 pc/                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       | 0. 10 11              |
| V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | Is V <sub>3</sub> or V <sub>av34</sub>                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -16, 13-18, or                                         |                                              |                                                                                                                             | 1.0 112                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Equation                                                                                             | 13-16 13-                                             | 18 or 1               |
| Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-19                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0, .0 .0, 0.                                          |                                              | If Yes, V <sub>12a</sub> =                                                                                                  |                                                                                              | 19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Legadion                                                                                              | 10 10, 10                                             | 10, 01 10             |
| apacity Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ks                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | Capacity                                                                                                                    | Checks                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                       |                       |
| the state of the s | Actual                                                                   | I c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | apacity                                                | LOS F?                                       |                                                                                                                             | Ac                                                                                           | tual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cap                                                                                                   | acity                                                 | LOSI                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                                                   | The second secon |                                                        |                                              |                                                                                                                             |                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exhibit 13-8                                                                                          | 7000                                                  | No                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 1                                            | V <sub>F</sub>                                                                                                              | 32                                                                                           | /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LYLIIDIL 19-0                                                                                         | 7200                                                  |                       |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                              | V <sub>F</sub>                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exhibit 13-8                                                                                          | -                                                     | _                     |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                                                   | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                              | $V_{FO} = V_{F}$ -                                                                                                          | V <sub>R</sub> 278                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exhibit 13-8                                                                                          | 7200                                                  | No                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                                                        | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                              | $V_{FO} = V_F - V_R$                                                                                                        | V <sub>R</sub> 278                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exhibit 13-8<br>Exhibit 13-10                                                                         | 7200<br>2000                                          | _                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Merge In                                                                 | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                              | $V_{FO} = V_{F}$ -                                                                                                          | V <sub>R</sub> 278<br>49<br><b>ering Di</b>                                                  | 30<br>1<br>verge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exhibit 13-8 Exhibit 13-10 Exhibit 13-10                                                              | 7200<br>2000<br>ee Area                               | No<br>No              |
| low Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                        | Exhibit 13-8  Fluence A  Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>rea</b><br>Desirable                                | Violation?                                   | $V_{FO} = V_F - V_R$ Flow Enter                                                                                             | V <sub>R</sub> 278<br>49<br>ering Di<br>Actual                                               | 30<br>1<br>verge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exhibit 13-8 Exhibit 13-10 Exhibit 13-10 Max Desirable                                                | 7200<br>2000<br>ee Area                               | No<br>No<br>Violation |
| low Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Merge In</b><br>Actual                                                | Exhibit 13-8  If Iuence A  Max I  Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Desirable                                              |                                              | $V_{FO} = V_F - V_R$ Flow Enter                                                                                             | V <sub>R</sub> 278<br>49<br><b>Pring Di</b><br>Actual<br>2314                                | 30<br>1<br><b>verge</b><br>E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8                                      | 7200<br>2000<br>ee Area<br>e<br>4400:All              | No<br>No<br>Violation |
| ow Entering V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Merge In<br>Actual<br>e Detern                                           | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    |                                              | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of \$5                                                                       | V <sub>R</sub> 278 49 ering Di Actual 2314 Service                                           | verge<br>E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8 Emination                            | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| ow Entering V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Merge In<br>Actual<br>e Detern                                           | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    |                                              | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of \$5                                                                       | V <sub>R</sub> 278 49 ering Di Actual 2314 Service                                           | verge<br>E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8                                      | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Merge In<br>Actual<br>e Detern                                           | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    |                                              | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S                                                                         | V <sub>R</sub> 278 49 ering Di Actual 2314 Service                                           | 80<br>1<br>verge<br>E:<br>Deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8 Emination                            | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 = (pc/mi/ln)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Merge In<br>Actual<br>e Detern<br>1734 v <sub>R</sub> +                  | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    |                                              | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S $D_R = 19.7$                                                            | V <sub>R</sub> 278 49 ering Di Actual 2314 Service                                           | 00 1 1 Verge Experience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8 Emination                            | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 = (pc/mi/ln) S = (Exhibit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Merge In Actual  e Determ 1734 v <sub>R</sub> +                          | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    |                                              | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S $D_R = 19.7$ LOS = B (E                                                 | V <sub>R</sub> 278 49 ering Di Actual 2314 Service (                                         | 1 verge Deter + 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable xhibit 13-8 Emination                            | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 = (pc/mi/ln) S = (Exhibit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Merge In Actual  e Determ 734 v R + 1                                    | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    | Violation?                                   | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S $D_R = 19.7$ LOS = B (E  Speed De                                       | V <sub>R</sub> 278 49 ering Di Actual 2314 Service 2 (pc/mi/ln) Exhibit 13- etermina         | Nerge<br>Verge<br>E:<br>Deter<br>+ 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable Axhibit 13-8 Emination 86 V <sub>12</sub> - 0.0  | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic  D <sub>R</sub> = 5.475 + 0.00  = (pc/mi/ln) S = (Exhibit 13-  peed Determi = (Exibit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Merge In Actual  e Determ 734 v R + 1 -2) nation                         | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    | Violation?                                   | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S $D_R = 19.7$ $LOS = B (E Speed De $ | V <sub>R</sub> 278 49 ering Di Actual 2314 Service (pc/mi/ln) Exhibit 13- termina 2 (Exhibit | B0 1 1   Verge   Potential   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable Achibit 13-8 Emination 86 V <sub>12</sub> - 0.0  | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic  O <sub>R</sub> = 5.475 + 0.00  = (pc/mi/ln)  S = (Exhibit 13  Deed Determi  = (Exibit 13-1)  mph (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Merge In Actual  e Determ 1734 v R + 1-2) mation 11) t 13-11)            | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    | Violation?                                   | $V_{FO} = V_{F} - V_{R}$ Flow Enter $V_{12}$ Level of S $D_{R} = 19.7$ $LOS = B (E$ Speed De $D_{S} = 0.47$ $S_{R} = 56.8$  | Pring Di Actual 2314 Service (pc/mi/ln) Exhibit 13- Actual 2 (Exhibit mph (Exhibit 13-       | verge<br>  E:<br>  Deter<br>+ 0.008<br>  (2)<br>  (4)<br>  (1)<br>  (1)<br>  (2)<br>  (3)<br>  (4)<br>  (4)<br>  (5)<br>  (4)<br>  (5)<br>  (4)<br>  (5)<br>  (4)<br>  (5)<br>  (6)<br>  (6)<br>  (7)<br>  (7) | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable Achibit 13-8 Exmination 36 V <sub>12</sub> - 0.0 | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |
| V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 E (pc/mi/ln) S = (Exhibit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Merge In Actual  e Determ 1734 v R + 1  -2) nation 11) t 13-11) t 13-11) | Exhibit 13-8  If luence A  Max I  Exhibit 13-8  mination (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desirable  f not F)                                    | Violation?                                   | $V_{FO} = V_F - V_R$ Flow Enter $V_{12}$ Level of S $D_R = 19.7$ $LOS = B (E Speed De S) = 0.47$ $S_R = 56.8$ $S_0 = 76.8$  | V <sub>R</sub> 278 49 ering Di Actual 2314 Service (pc/mi/ln) Exhibit 13- termina 2 (Exhibit | Deter<br>+ 0.006<br>2)<br>bit 13-<br>bit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exhibit 13-8 Exhibit 13-10 E Influence Max Desirable whibit 13-8 Emination 86 V <sub>12</sub> - 0.0   | 7200<br>2000<br>ee Area<br>e<br>4400:All<br>(if not F | No<br>No<br>Violation |

| General Info                                                               | rmation                          |                              | PS AND RAI                                                   | Site Info                                                     |                                                                       | W.C.                                              |                                        | - 11                |                                      |
|----------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|---------------------|--------------------------------------|
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Perio      | HG<br>CIM<br>23/0                | *                            |                                                              | Freeway/Dir of T<br>Junction<br>Jurisdiction<br>Analysis Year | ravel R<br>2<br>H                                                     | RHVP 2WB Exit<br>WB Exiting Ra<br>lamilton<br>013 | ing Ramp<br>mp                         |                     |                                      |
| Project Description                                                        |                                  | DE ATTRIBUTE AND DESCRIPTION |                                                              | araryoto rear                                                 |                                                                       |                                                   |                                        |                     | G K                                  |
| Inputs                                                                     | **                               |                              | THE STATE OF                                                 | 1 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       | ** 3                                                                  | ** *****                                          |                                        |                     |                                      |
| Upstream Adj F                                                             | Ramp<br>On                       | Ramp Numb                    | mber of Lanes, N<br>er of Lanes, N                           | 3                                                             |                                                                       |                                                   | (*) X)                                 | Downstrea<br>Ramp   | am Adj                               |
| 0 100 0                                                                    | , on                             | 1                            | Lane Length, LA                                              |                                                               |                                                                       |                                                   |                                        | o Yes               | o On                                 |
| e No o                                                                     | Off                              | 1                            | Lane Length L <sub>D</sub>                                   | 500                                                           |                                                                       |                                                   |                                        | e No                | o Off                                |
| 1 = 4                                                                      | ť                                | Freeway Vol                  | 100 A 100 A                                                  | 3376                                                          | 100 Jan<br>200 Jan 201                                                | × +                                               | ÷ .                                    | L <sub>down</sub> = | ft                                   |
| -up '                                                                      |                                  | Ramp Volum                   | ie, v <sub>R</sub><br>e-Flow Speed, S <sub>FF</sub>          | 543                                                           |                                                                       | *                                                 | 5                                      |                     |                                      |
| V <sub>u</sub> = • v                                                       | eh/h                             |                              | e-riow Speed, S <sub>FF</sub><br>Flow Speed, S <sub>FR</sub> | 70.0<br>35.0                                                  | *                                                                     | 9                                                 |                                        | $V_D =$             | veh/h                                |
| Conversion t                                                               | o no/h Hn                        |                              |                                                              | 33.0                                                          |                                                                       |                                                   |                                        | 17 37 E. S          |                                      |
|                                                                            | V PC/II OII                      | T                            | 1                                                            | T                                                             | T                                                                     |                                                   | Τ.                                     |                     |                                      |
| (pc/h) .                                                                   | (Veh/hr)                         | PHF.                         | Terrain .                                                    | . %Truck                                                      | %Rv                                                                   | . f <sub>HV</sub>                                 | f <sub>p</sub>                         | v = V/PHF           | x t <sub>HV</sub> x t <sub>p</sub> . |
| Freeway :: .:                                                              | 3376                             | 0.94                         | Level                                                        | 2 0                                                           | 0.                                                                    | 1.000                                             | 1.00                                   |                     | 91: ::: : ::::::                     |
| Ramp                                                                       | 543                              | 0.94                         | Level                                                        | 0 -                                                           | 0                                                                     | 1.000                                             | 1.00                                   | 57                  | 78                                   |
| UpStream<br>DownStream                                                     |                                  |                              |                                                              |                                                               |                                                                       | - 1 1 11                                          |                                        |                     |                                      |
| Downoucum                                                                  |                                  | Merge Areas                  |                                                              | J                                                             |                                                                       |                                                   | Diverge Areas                          |                     |                                      |
| Estimation of                                                              | FV <sub>12</sub>                 |                              |                                                              |                                                               | Estimatio                                                             | n of V <sub>12</sub>                              |                                        |                     |                                      |
|                                                                            | V <sub>12</sub> = V <sub>F</sub> | (P <sub>EM</sub> )           |                                                              |                                                               |                                                                       |                                                   | = V <sub>R</sub> + (V <sub>F</sub> - V | P <sub>ED</sub>     | -                                    |
| -EQ =                                                                      | ,                                | ation 13-6 or                | 13-7)                                                        |                                                               | L <sub>EQ</sub> =                                                     |                                                   | (Equation 13-1                         |                     | )                                    |
| P <sub>FM</sub> =                                                          |                                  | Equation (                   | -                                                            |                                                               | P <sub>FD</sub> =                                                     |                                                   | .644 using Eq                          |                     |                                      |
| / <sub>12</sub> =                                                          | pc/h                             |                              |                                                              |                                                               | V <sub>12</sub> =                                                     |                                                   | 517 pc/h                               |                     |                                      |
| / <sub>3</sub> or V <sub>av34</sub>                                        | pc/h (                           | Equation 13                  | 3-14 or 13-17)                                               |                                                               | V <sub>3</sub> or V <sub>av34</sub>                                   | ^ 1                                               | 074 pc/h (Equ                          | ation 13-14         | or 13-17)                            |
| Is $V_3$ or $V_{av34} > 2,70$                                              | 0 pc/h? <sub>0</sub> Ye          | s o No                       |                                                              |                                                               | Is V <sub>3</sub> or V <sub>av34</sub>                                | > 2,700 pc/h?                                     | Yes @ No                               |                     |                                      |
| ls V <sub>3</sub> or V <sub>av34</sub> > 1.5 *<br>f Yes,V <sub>12a</sub> = |                                  | Equation 13                  | 3-16, 13-18, or                                              |                                                               | Is V <sub>3</sub> or V <sub>av34</sub> :<br>If Yes,V <sub>12a</sub> = | - 1                                               | g Yes g No<br>oc/h (Equation<br>9)     | 13-16, 13-          | 18, or 13-                           |
| Capacity Che                                                               | cks                              |                              |                                                              |                                                               | Capacity                                                              | Checks                                            |                                        |                     |                                      |
|                                                                            | Actual                           | (                            | Capacity                                                     | LOS F?                                                        |                                                                       | Actua                                             |                                        | pacity              | LOS F?                               |
|                                                                            |                                  |                              |                                                              |                                                               | V <sub>F</sub>                                                        | 3591                                              | Exhibit 13-8                           |                     | No                                   |
| $V_{FO}$                                                                   |                                  | Exhibit 13-8                 |                                                              |                                                               | $V_{FO} = V_{F} - V_{F}$                                              | V <sub>R</sub> 3013                               | Exhibit 13-8                           |                     | No                                   |
|                                                                            |                                  |                              |                                                              |                                                               | V <sub>R</sub>                                                        | 578                                               | Exhibit 13-1                           |                     | No                                   |
| low Entering                                                               |                                  |                              |                                                              |                                                               | Flow Ente                                                             |                                                   | rge Influen                            |                     |                                      |
|                                                                            | Actual                           |                              | Desirable                                                    | Violation?                                                    | 1,,                                                                   | Actual                                            | Max Desirab                            |                     | Violation?                           |
| V <sub>R12</sub>                                                           | - 5 /                            | Exhibit 13-8                 | 75 ( =)                                                      |                                                               | V <sub>12</sub>                                                       | 2517                                              | Exhibit 13-8                           | 4400:All            | No                                   |
| evel of Servi                                                              |                                  |                              |                                                              |                                                               |                                                                       |                                                   | termination                            |                     | <del>)</del>                         |
| $D_R = 5.475 + 0.0$                                                        |                                  | U.UU/8 V <sub>12</sub> ·     | 0.00027 L <sub>A</sub>                                       |                                                               |                                                                       |                                                   | .0086 V <sub>12</sub> - 0.             | noa r <sup>D</sup>  |                                      |
| $P_R = (pc/mi/ln)$                                                         |                                  |                              |                                                              |                                                               |                                                                       | (pc/mi/ln)                                        |                                        |                     |                                      |
| OS = (Exhibit 1                                                            |                                  |                              |                                                              |                                                               | LOS = C (E                                                            |                                                   |                                        |                     |                                      |
|                                                                            | ination                          |                              |                                                              |                                                               | Speed De                                                              |                                                   |                                        |                     |                                      |
| Speed Determ                                                               |                                  |                              |                                                              |                                                               | 10 / 0/                                                               | (Exhibit 13                                       | -12)                                   |                     |                                      |
| Speed Determ                                                               |                                  |                              |                                                              |                                                               | -                                                                     |                                                   |                                        |                     |                                      |
| Speed Determ                                                               | bit 13-11)                       |                              |                                                              |                                                               | S <sub>R</sub> = 56.6                                                 | mph (Exhibit<br>mph (Exhibit                      | 13-12)                                 |                     |                                      |

HAM0064439\_0001 RHV0001045

| e<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 9.50                              |                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ** .                                                                                                                                                     |                                                                         | · .                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e jank                                                                                                                                                   |                                                                         | e form                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA                                                                              | MPS ANI                           | RAMP JUN                            | CTIONS V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VORKSHE                                                                                                                                                  | T                                                                       | The Real Post                                                         | and the second s |                                      |
| General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mation                                                                          | 3, 11                             | 7 7 1 5 mm (2) 5 1 (4) 4            | Site Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rmation                                                                                                                                                  | ** *** # *<br>* ***                                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HG                                                                              |                                   |                                     | and the same of th | ravel R                                                                                                                                                  |                                                                         | ing Ramp                                                              | 4-12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 k = * *                            |
| Agency or Company<br>Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | A<br>7/2013                       |                                     | unction<br>urisdiction -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | VB Entering<br>amilton                                                  | x (4)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                    |
| Analysis Time Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | Peak Hour                         |                                     | nalysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          | 13                                                                      | 8                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. °                                 |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                   | 18.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | 4 223                                                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                             |                                   |                                     | . //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |
| Upstream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                   | mber of Lanes, N                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                         | 7 111                                                                 | Downstre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | am Adj                               |
| o Yes o Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                               |                                   | er of Lanes, N                      | . 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         |                                                                       | Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P TORR                               |
| 0 103 0 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                   | Lane Length, LA                     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                         |                                                                       | o Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o On                                 |
| e No o Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                                               |                                   | Lane Length L <sub>D</sub>          | 2121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         |                                                                       | e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Off                                |
| L <sub>un</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 | Freeway Vol                       | ***                                 | 2194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a pi                                                                                                                                                     | e4 5.                                                                   | w ng                                                                  | L <sub>down</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft                                   |
| L <sub>up</sub> –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | Ramp Volum                        | 14                                  | 1273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         | *                                                                     | down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| V <sub>u</sub> = veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                   | e-Flow Speed, S <sub>FF</sub>       | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         |                                                                       | V <sub>D</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | veh/h                                |
| Canyavaian 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 no/h Hn                                                                       |                                   | 2.0                                 | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                         |                                                                       | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Transaction 1                        |
| Conversion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | υ pc/π υπο<br>V                                                                 | T                                 |                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T. No. T                                                                                                                                                 |                                                                         |                                                                       | . 1 //mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Veh/hr)                                                                        | PHF                               | Terrain                             | %Truck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Rv                                                                                                                                                      | f <sub>HV</sub>                                                         |                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2194                                                                            | 0.94                              | Level                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                        | 1.000                                                                   | 1.00                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2334                                 |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1273                                                                            | 0.94                              | Level                               | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                        | 1.000                                                                   | 1.00                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1354                                 |
| UpStream<br>DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | <b>-</b>                          | <u> </u>                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +-+                                                                                                                                                      |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77 FIF - 1 4                                                                    | Merge Areas                       | m 1 to 1100 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 100 0 0000 00                                                                                                                                        | D                                                                       | iverge Areas                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>12</sub>                                                                 |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimation                                                                                                                                               | n of v <sub>12</sub>                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>12</sub> = V <sub>F</sub>                                                | (P <sub>FM</sub> )                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | V <sub>40</sub> = \                                                     | / <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> )                   | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| - <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Equa                                                                           | ation 13-6 c                      | or 13-7)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>EQ</sub> =                                                                                                                                        |                                                                         | Equation 13-1                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)                                   |
| P <sub>FM</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.591                                                                           | using Equa                        | tion (Exhibit 13-6)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P <sub>FD</sub> =                                                                                                                                        |                                                                         | sing Equation                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| / <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1381                                                                            |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>12</sub> =                                                                                                                                        |                                                                         | c/h                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| / <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 953 p<br>17)                                                                    | c/h (Equation                     | on 13-14 or 13-                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>3</sub> or V <sub>av34</sub>                                                                                                                      | р                                                                       | c/h (Equation 13                                                      | 3-14 or 13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7)                                   |
| Is V <sub>3</sub> or V <sub>av34</sub> > 2,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | s a No                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is V <sub>3</sub> or V <sub>av34</sub> >                                                                                                                 | 2,700 pc/h? <sub>0</sub>                                                | Yes o No                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Is V <sub>3</sub> or V <sub>av34</sub> > 1.5 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is V <sub>3</sub> or V <sub>av34</sub> >                                                                                                                 |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| f Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h                                                                            | (Equation 1                       | 3-16, 13-18, or                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If Yes,V <sub>12a</sub> =                                                                                                                                | p<br>13                                                                 | c/h (Equation<br>-19)                                                 | 13-16, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-18, or                             |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-19)                                                                          |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capacity (                                                                                                                                               |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Sapacity One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actual                                                                          |                                   | Capacity                            | LOS F?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Capacity C                                                                                                                                               | Actual                                                                  | Capa                                                                  | acity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS F?                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 1011101                                                                       |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>F</sub>                                                                                                                                           | 1                                                                       | Exhibit 13-8                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3688                                                                            | Exhibit 13-8                      |                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{FO} = V_F - V_F$                                                                                                                                     | R                                                                       | Exhibit 13-8                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | LAHIDIC 10-0                      |                                     | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>R</sub>                                                                                                                                           | 1                                                                       | Exhibit 13-                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3000                                                                            |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | 1                                                                       | 10                                                                    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                         | 1 6                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Merge In                                                                        |                                   |                                     | Violetic=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flow Enter                                                                                                                                               |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Violetie-2                           |
| Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Merge In                                                                        | Max                               | Desirable                           | Violation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flow Enter                                                                                                                                               | Actual                                                                  | Max Desira                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Violation?                           |
| Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Merge In Actual 2735                                                            | Max<br>Exhibit 13-8               | Desirable<br>4600:All               | Violation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flow Ente                                                                                                                                                | Actual                                                                  | Max Desira<br>Exhibit 13-8                                            | able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| Flow Entering  V <sub>R12</sub> Level of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Merge In Actual 2735 ce Determ                                                  | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Enter                                                                                                                                               | Actual ervice Det                                                       | Max Desira<br>Exhibit 13-8<br>ermination                              | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| V <sub>R12</sub><br>Level of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Actual 2735 CCE Determ 0.00734 v R + 0                                          | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Enter                                                                                                                                               | Actual ervice Det = 4.252 + 0.0                                         | Max Desira<br>Exhibit 13-8                                            | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| V <sub>R12</sub> Level of Servi D <sub>R</sub> = 5.475 + ( D <sub>R</sub> = 23.1 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Actual 2735  Ce Determ 0.00734 v R + 0                                          | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Enter                                                                                                                                               | Actual                                                                  | Max Desira<br>Exhibit 13-8<br>ermination                              | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Flow Entering $V_{R12}$ Level of Servi $D_{R} = 5.475 + 0$ $O_{R} = 23.1 \text{ (pc/mi)}$ $OS = C \text{ (Exhibit 1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Merge In Actual 2735  Ce Determ 0.00734 v R + 0  7/in) 3-2)                     | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Enter                                                                                                                                               | Actual                                                                  | Max Desir<br>Exhibit 13-8<br>ermination<br>0086 V <sub>12</sub> - 0.0 | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| V <sub>R12</sub> Level of Servi D <sub>R</sub> = 5.475 + ( OS = C (Exhibit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Merge In  Actual 2735  Ce Detern 0.00734 v R + 0  7/ln) 3-2)  Actual 2735       | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flow Enter  V <sub>12</sub> Level of Se  D <sub>R</sub> D <sub>R</sub> = (pc/n  LOS = (Exhi                                                              | Actual  ervice Det = 4.252 + 0.0  ni/ln)  bit 13-2)  ermination         | Max Desir<br>Exhibit 13-8<br>ermination<br>0086 V <sub>12</sub> - 0.0 | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| V <sub>R12</sub> Level of Servi D <sub>R</sub> = 5.475 + 1 O <sub>R</sub> = 23.1 (pc/mi OS = C (Exhibit 1 Speed Determing U <sub>S</sub> = 0.351 (Exib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Merge In Actual 2735  Ce Determ 0.00734 v R + 0 7/ln) 3-2)  Mination iit 13-11) | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flow Enter                                                                                                                                               | Actual  ervice Det = 4.252 + 0.0 ni/In) ibit 13-2) ermination it 13-12) | Max Desir<br>Exhibit 13-8<br>ermination<br>0086 V <sub>12</sub> - 0.0 | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Flow Entering $V_{R12}$ Level of Servi $D_R = 5.475 + 0$ $R = 23.1 \text{ (pc/mi)}$ $OS = C \text{ (Exhibit 1)}$ $OS = C \text{ (Exhibit 1)}$ $OS = C \text{ (Exhibit 2)}$ $OS = C \text{ (Exhibit 2)}$ $OS = C \text{ (Exhibit 3)}$ $OS = C \text{ (Exhibit 4)}$ $OS = C  (Exh$ | Merge In  Actual 2735  Ce Detern 0.00734 v R + 0  7/ln) 3-2)  Actual 2735       | Max<br>Exhibit 13-8<br>nination ( | Desirable<br>4600:All<br>(if not F) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flow Enter  V <sub>12</sub> Level of So  D <sub>R</sub> D <sub>R</sub> = (pc/n  LOS = (Exhi  Speed Det  D <sub>s</sub> = (Exhib  S <sub>R</sub> = mph (i | Actual  ervice Det = 4.252 + 0.0  ni/ln)  bit 13-2)  ermination         | Max Desir<br>Exhibit 13-8<br>ermination<br>0086 V <sub>12</sub> - 0.0 | able<br>o (if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAIL O MIAD                                                    | RAMP JUN                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EI .                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|
| General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                        | Site Infor             | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                       |                                        | reeway/Dir of To       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | ering Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) E                                   | * 4, 15 H                            |
| Agency or Compan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                        | ınction                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3WB Entering                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                      |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/2013                                                        |                                        | urisdiction            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hamilton                                                                                                          | e .e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                      |
| Analysis Time Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Hour                                                      | A                                      | nalysis Year           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2013                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redhill Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y Study                                                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                        | 70 7 70 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                     |                                      |
| Upstream Adj Ramj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | ber of Lanes, N                        | 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Downstr                               | eam Adj                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp Number                                                    | of Lanes, N                            | 1                      | 16 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp                                  | 100                                  |
| o Yes o O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acceleration L                                                 | ane Length, L <sub>A</sub>             | 500                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o Yes                                 | o On                                 |
| - N 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Deceleration L                                                 | ane Length Lp                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| e No o O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freeway Volur                                                  |                                        | 2770                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ө Мо                                  | o Off                                |
| n ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ** <sub>k</sub> = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ramp Volume                                                    |                                        | 834                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>down</sub> =                   | ft                                   |
| up It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                              |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | down                                  |                                      |
| V <sub>u</sub> = veh/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | Flow Speed, S <sub>FF</sub>            | 70.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_D =$                               | veh/h                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp Free-Flo                                                  | ow Speed, S <sub>FR</sub>              | 30.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ×                                    |
| Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to pc/h Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | der Base (                                                     | Conditions                             | 4                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - *** * inc                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHF                                                            | Terrain                                | %Truck                 | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>HV</sub>                                                                                                   | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v = V/PH                              | F x f <sub>HV</sub> x f <sub>p</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Veh/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                                                           |                                        |                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                                      |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                           | Level                                  | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 2947                                 |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.94                                                           | Level                                  | 0                      | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 887                                  |
| UpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                              |                                        |                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>_</b>                                                                                                          | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                      |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Merge Areas                                                    |                                        |                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del>                                                                                                      | Diverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 1000                                 |
| Estimation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Merge Areas                                                    |                                        |                        | Fetimati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on of V <sub>12</sub>                                                                                             | Diverge Aleas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                      |
| _Stillation 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                        |                        | Latinati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{12} = V_{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P <sub>FM</sub> )                                             |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>12</sub> =                                                                                                 | V <sub>R</sub> + (V <sub>F</sub> - V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P <sub>FD</sub>                       |                                      |
| EQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation 13-6 or                                                  | 13-7)                                  |                        | L <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | (Equation 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 13)                                  |
| FM =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | using Equati                                                   | on (Exhibit 13-6)                      |                        | P <sub>FD</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | using Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |
| / <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                        |                        | V <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | pc/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or (Exhibit )                         | 01)                                  |
| (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | n 13-14 or 13-                         |                        | (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.1110                               | <b>47</b> 3                          |
| <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                        |                        | V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | 13-14 or 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17)                                   |                                      |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 pc/h? 0 Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s g No                                                         |                                        |                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | o Yes o No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * V <sub>12</sub> /2 0 Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s a No                                                         |                                        |                        | Is V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | o Yes o No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |
| f Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | -16, 13-18, or                         |                        | If Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   | pc/h (Equatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 13-16, 1                            | 3-18, or                             |
| 1 es, v <sub>12a</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                                              |                                        |                        | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                 | 13-19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                        |                        | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Checks                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e <b>cks</b><br>Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ca                                                             | pacity                                 | LOS F?                 | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Checks<br>. Actual                                                                                                | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pacity                                | LOS F?                               |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ca                                                             | pacity                                 | LOS F?                 | Capacity<br>V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | Ca<br>Exhibit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T .                                   | LOS F?                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E 177 40 0                                                     | pacity                                 |                        | V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Actual                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                     | LOS F?                               |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ca<br>Exhibit 13-8                                             | pacity                                 | LOS F?                 | $V_F$ $V_{FO} = V_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Actual                                                                                                          | Exhibit 13-<br>Exhibit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                     | LOS F?                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E 177 40 0                                                     | pacity                                 |                        | V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Actual                                                                                                          | Exhibit 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                     | LOS F?                               |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual<br>3834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exhibit 13-8                                                   |                                        |                        | $\frac{V_F}{V_{FO} = V_F - V_R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Actual                                                                                                          | Exhibit 13-<br>Exhibit 13-<br>Exhibit 13<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                     |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual 3834  g Merge In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exhibit 13-8                                                   |                                        |                        | $\frac{V_F}{V_{FO} = V_F - V_R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Actual                                                                                                          | Exhibit 13-<br>Exhibit 13-<br>Exhibit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>8<br>-<br>nce Area               |                                      |
| V <sub>FO</sub><br>Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3834  g Merge In Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exhibit 13-8  offluence Ar  Max D                              | rea<br>esirable                        | No<br>Violation?       | V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> - V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>R</sub> Actual                                                                                             | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>8<br>-<br>nce Area               |                                      |
| V <sub>FO</sub> Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3834  g Merge In Actual 2630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exhibit 13-8  of Luence Ai  Max D  Exhibit 13-8                | rea<br>esirable<br>4600:All            | No                     | V <sub>F</sub> V <sub>F</sub> V <sub>F</sub> V <sub>R</sub> V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>R</sub>                                                                                                    | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub><br>Flow Entering<br>V <sub>R12</sub><br>.evel of Serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3834  G Merge In Actual 2630  cice Determ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No<br>Violation?       | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Partial V <sub>R</sub> Service Description                                                                        | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des Exhibit 13-8 Eterminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> Flow Entering  V <sub>R12</sub> evel of Serv  D <sub>R</sub> = 5.475 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3834  g Merge In Actual 2630  rice Determ 0.00734 v R + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exhibit 13-8  of Luence Ai  Max D  Exhibit 13-8                | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation?          | V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> - V <sub>R</sub> Flow Enter V <sub>12</sub> Level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ering Dive Actual Service De                                                                                      | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> Flow Entering V <sub>R12</sub> evel of Serv D <sub>R</sub> = 5.475 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3834  g Merge In Actual 2630  rice Determ 0.00734 v R + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation?          | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent $V_{12}$ Level of $V_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Actual  V <sub>R</sub> Actual  Service De R = 4.252 + (c/mi/ln)                                                   | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des Exhibit 13-8 Eterminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> Flow Entering  V <sub>R12</sub> evel of Serv  D <sub>R</sub> = 5,475 +  R = 22.4 (pc/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Actual  3834  g Merge In  Actual 2630  rice Determ 0.00734 v R + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation?          | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent $V_{12}$ Level of $V_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ering Dive Actual Service De                                                                                      | Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 Erge Influer Max Des Exhibit 13-8 Eterminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> V <sub>R12</sub> evel of Serv  D <sub>R</sub> = 5.475 +  R = 22.4 (pc/m OS = C (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3834    G Merge In Actual   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   26 | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation?          | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent $V_{12}$ Level of $V_{12}$ $V_{13}$ $V_{14}$ $V_{15}$                                                                                                                                                                                                                                                            | Actual  V <sub>R</sub> Actual  Service De R = 4.252 + (c/mi/ln)                                                   | Exhibit 13- Exhibi | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> V <sub>R12</sub> evel of Serv  D <sub>R</sub> = 5.475 +  R = 22.4 (pc/m OS = C (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Actual  3834  g Merge In  Actual  2630  rice Determ  0.00734 v R + ( ni/ln)  13-2)  mination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No<br>Violation?<br>No | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent $V_{12}$ Level of $V_{12}$ $V_{13}$ $V_{14}$ $V_{15}$                                                                                                                                                                                                                                                            | Actual  VR  Actual  Service De  R = 4.252 + 0  Activity (Actual)  Actual                                          | Exhibit 13- Exhibi | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| V <sub>FO</sub> V <sub>R12</sub> Level of Serv D <sub>R</sub> = 5.475 + R = 22.4 (pc/m DS = C (Exhibit Speed Determ S = 0.345 (Exi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3834    G Merge In Actual 2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630 | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation?          | V <sub>FO</sub> = V <sub>F</sub> - V <sub>R</sub> Flow Ent  V <sub>12</sub> Level of D  D <sub>R</sub> = (po LOS = (Ex)  Speed De  D <sub>S</sub> = (Ex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actual  V <sub>R</sub> Pering Dive  Actual  Service De  R = 4.252 + 0  Imilin (hibit 13-2)  Actual                | Exhibit 13- Exhibi | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| $V_{FO}$ Flow Entering $V_{R12}$ Evel of Serv $D_R = 5.475 + 22.4 \text{ (pc/m}$ $OS = C \text{ (Exhibit)}$ Speed Determination of the service | Actual  3834  g Merge In  Actual 2630  rice Detern 0.00734 v R + ( ni/ln) 13-2) mination  bit 13-11) (Exhibit 13-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation? No       | $V_F$ $V_{FO} = V_F - V_R$ Flow Ent $V_{12}$ Level of $V_{12}$ $V_{13} = V_{14}$ $V_{15} = V_{15}$ $V$                                                                                                                                                              | Actual  V <sub>R</sub> Actual  Service De  R = 4.252 + 0  /mi/ln)  chibit 13-2)  etermination  in (Exhibit 13-12) | Exhibit 13- Exhibi | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |
| $V_{FO}$ Flow Entering $V_{R12}$ Evel of Serv $D_R = 5.475 + 100$ $C_R = 22.4 \text{ (pc/m}$ $C_R = 22.4 \text{ (pc/m}$ $C_R = 0.345 \text{ (Exi}$ $C_R = 0.345 \text{ (Exi}$ $C_R = 60.3 \text{ mph}$ $C_R = 67.5 \text{ mph}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3834    G Merge In Actual 2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630   2630 | Exhibit 13-8  offluence Ar  Max D  Exhibit 13-8  mination (iii | rea<br>esirable<br>4600:All<br>Fnot F) | No Violation? No       | V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> - V <sub>R</sub> V <sub>12</sub> Level of D D D C D S S S S S S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D S R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M D R E M | Actual  V <sub>R</sub> Pering Dive  Actual  Service De  R = 4.252 + 0  Imilin (hibit 13-2)  Actual                | Exhibit 13- Exhibi | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Violation?                           |

| General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                    | RAMP JUN                     | Site Info    |                                                                    | e A Company of                                           | 3 78 18 18 19 19                                  |                                         |                                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|------------------------------|--------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------|--|--|
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HG                                            | 70.75.74.40        |                              |              |                                                                    | RHVP 4NB-Ente                                            | ring Domn                                         |                                         |                                    |  |  |
| Agency or Compan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,15                                          |                    |                              | unction      |                                                                    | 4NB Entering                                             | ing Kamp                                          |                                         |                                    |  |  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •// C-02/05                                   |                    |                              |              |                                                                    |                                                          |                                                   |                                         | v                                  |  |  |
| # 10 N. S. S. S. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 07/2013            |                              | urisdiction  |                                                                    | Hamilton                                                 | g # - 000                                         |                                         |                                    |  |  |
| Analysis Time Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | Peak Hour          | A                            | nalysis Year |                                                                    | 2013                                                     |                                                   |                                         |                                    |  |  |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Redhill Safety                                | y Study            |                              |              | e: 2.44                                                            |                                                          |                                                   | 1 1/ 1                                  |                                    |  |  |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 1                  |                              |              |                                                                    |                                                          |                                                   |                                         | -                                  |  |  |
| Upstream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                             | Freeway Nun        | ber of Lanes, N              | 2            | 2 Ta 2 Ta 2                                                        | **                                                       | * *                                               | Downstre                                | am Adi                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · .                                           | Ramp Number        | r of Lanes, N                | 1            |                                                                    |                                                          | * * *                                             | Ramp                                    |                                    |  |  |
| o Yes o O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                             | Acceleration I     | ane Length, L                | 500          |                                                                    |                                                          |                                                   |                                         | •                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                             |                    | Lane Length L                |              |                                                                    |                                                          |                                                   | o Yes                                   | o On                               |  |  |
| e No o O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ff                                            | 1                  |                              |              |                                                                    |                                                          |                                                   | e No                                    | o Off                              |  |  |
| # ** <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | Freeway Volu       | me, V <sub>F</sub>           | 3846         | H 5 1 51 H                                                         | 90 N 90 N                                                | * * * * * *                                       |                                         | _                                  |  |  |
| <sub>-up</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | Ramp Volume        | , V <sub>R</sub>             | 1092         | *                                                                  |                                                          | 100                                               | L <sub>down</sub> =                     | ft                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | Freeway Free       | -Flow Speed, S <sub>FF</sub> | 70.0         |                                                                    |                                                          |                                                   |                                         |                                    |  |  |
| $V_{\rm u} = \frac{1}{2}  \text{veh/h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ר                                             |                    |                              |              |                                                                    |                                                          | - 4                                               | $V_D =$                                 | veh/h                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                      |                    | ow Speed, S <sub>FR</sub>    | 30.0         | eren mener                                                         |                                                          | <u> </u>                                          | 111111111111111111111111111111111111111 | . 1                                |  |  |
| Conversion t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o pc/h Un                                     | der Base           | Conditions                   |              | , A                                                                |                                                          | 1.25 1.17                                         | 1 180 11 =                              | * * * * * * *                      |  |  |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Veh/hr)                                      | PHF                | Terrain                      | %Truck       | %Rv                                                                | f <sub>HV</sub>                                          | f <sub>p</sub>                                    | v = V/PHF                               | x f <sub>HV</sub> x f <sub>p</sub> |  |  |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3846                                          | 0.94               | Level                        | 0            | 0                                                                  | 1.000                                                    | 1.00                                              | 4                                       |                                    |  |  |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                    |                              | 0            | 0                                                                  |                                                          |                                                   |                                         |                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1092                                          | 0.94               | Level                        | U            | 1 0                                                                | 1.000                                                    | 1.00                                              | <u> </u>                                | 1162                               |  |  |
| JpStream<br>DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b>                                       | +                  |                              |              |                                                                    | <del> </del>                                             |                                                   |                                         |                                    |  |  |
| Jown Silean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Merge Areas        |                              |              |                                                                    | 1277 78 3                                                | Divorgo Arogo                                     | 31.65.15                                | 2 ** (B.S.)                        |  |  |
| Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fv                                            | Weige Aleas        |                              |              | Ectimoti                                                           | on of v <sub>12</sub>                                    | Diverge Areas                                     |                                         |                                    |  |  |
| Sumation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                              |              | ESuman                                                             | 011 01 V <sub>12</sub>                                   | · · · · · · · · · · · · · · · · · · ·             |                                         |                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{12} = V_{F}$                              | (P <sub>FM</sub> ) | ,                            |              |                                                                    | V <sub>12</sub> =                                        | V <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | )P <sub>FD</sub>                        |                                    |  |  |
| EQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Equ                                          | ation 13-6 or      | 13-7)                        |              | L <sub>EQ</sub> =                                                  |                                                          | (Equation 13-                                     |                                         | 3)                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                    |                              |              | 1                                                                  |                                                          |                                                   |                                         |                                    |  |  |
| <sub>FM</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                    | ion (Exhibit 13-6)           |              | P <sub>FD</sub> =                                                  |                                                          | using Equatio                                     | II (EXIIDIL I                           | 0-7)                               |  |  |
| 12 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4091                                          |                    |                              |              | V <sub>12</sub> =                                                  |                                                          | pc/h                                              |                                         |                                    |  |  |
| 3 or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 pc/                                         | h (Equation        | 13-14 or 13-17)              |              | V <sub>3</sub> or V <sub>av34</sub> pc/h (Equation 13-14 or 13-17) |                                                          |                                                   |                                         |                                    |  |  |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 pc/h? o Ye                                  | s a No             |                              |              | Is V <sub>3</sub> or V <sub>2V3</sub>                              | > 2,700 pc/h?                                            | Yes o No                                          |                                         |                                    |  |  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                    |                              |              |                                                                    | > 1.5 * V <sub>12</sub> /2                               |                                                   |                                         |                                    |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                    | -16, 13-18, or               |              |                                                                    |                                                          | pc/h (Equation                                    | n 13_16 11                              | 3_18 or                            |  |  |
| Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13-19                                         |                    | -10, 10-10, 01               |              | If Yes,V <sub>12a</sub> =                                          |                                                          | 3-19)                                             | 115-10, 10                              | 3-10, 01                           |  |  |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                    |                              |              | Capacity                                                           |                                                          |                                                   |                                         |                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual                                        | T C                | apacity                      | LOS F?       | 1                                                                  | Actual                                                   | Car                                               | acity                                   | LOS F?                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0.00                                        | 1                  | -pasity                      | 20011        | V <sub>F</sub>                                                     | , totala                                                 | Exhibit 13-8                                      |                                         | 1 2001.                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | 1 1                |                              | 1            |                                                                    |                                                          |                                                   |                                         | +                                  |  |  |
| $V_{FO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5253                                          | Exhibit 13-8       |                              | Yes          | $V_{FO} = V_{F} -$                                                 | VR                                                       | Exhibit 13-8                                      |                                         |                                    |  |  |
| , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                    |                              |              | V <sub>R</sub>                                                     |                                                          | Exhibit 13-                                       |                                         |                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                    |                              |              |                                                                    |                                                          | 10                                                |                                         |                                    |  |  |
| low Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Merge In                                      | fluence A          | rea                          |              | Flow Ent                                                           | ering Dive                                               |                                                   |                                         |                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual                                        | Max I              | esirable e                   | Violation?   |                                                                    | Actual                                                   | Max Desi                                          | rable                                   | Violation?                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5253                                          | Exhibit 13-8       | 4600:All                     | Yes          | V <sub>12</sub>                                                    |                                                          | Exhibit 13-8                                      |                                         |                                    |  |  |
| V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ice Detern                                    | nination (i        | f not F)                     |              |                                                                    | Service De                                               | termination                                       | n (if not                               | F)                                 |  |  |
| V <sub>R12</sub><br>evel of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                    |                              |              |                                                                    | $_{R} = 4.252 + 0$                                       |                                                   |                                         |                                    |  |  |
| evel of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00734  y + 0                                |                    | A                            |              |                                                                    |                                                          | 12 - 0.                                           | D LD                                    | *                                  |  |  |
| evel of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00734 v <sub>R</sub> + (                    | 12                 |                              |              | $D_R = (pc$                                                        | /mi/ln)                                                  |                                                   |                                         |                                    |  |  |
| D <sub>R</sub> = 5.475 + 42.8 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /ln)                                          | 12                 |                              |              |                                                                    |                                                          |                                                   |                                         |                                    |  |  |
| D <sub>R</sub> = 5.475 + 42.8 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /ln)                                          | 12                 | × .                          |              |                                                                    | hibit 13-2)                                              |                                                   |                                         |                                    |  |  |
| D <sub>R</sub> = 5.475 + 42.8 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /ln)<br>3-2)                                  | 12                 | ٠.                           |              | LOS = (Ex                                                          |                                                          | n                                                 |                                         | , , , , , ,                        |  |  |
| evel of Servi<br>$D_R = 5.475 + 42.8 \text{ (pc/mi)}$<br>$D_R = 5.475 + 42.8 \text{ (pc/mi)}$<br>$D_R = F$ (Exhibit 1)<br>$D_R = F$ (Exhibit 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /ln)<br>3-2)<br><b>nination</b>               | 12                 |                              |              | LOS = (EX                                                          | chibit 13-2)<br>eterminatio                              | n                                                 |                                         | , 20                               |  |  |
| evel of Servi<br>$D_R = 5.475 +$ $R = 42.8 \text{ (pc/mi)}$ $R = 42.8  $ | /ln)<br>3-2)<br><b>nination</b><br>oit 13-11) | 12                 |                              |              | LOS = (EX<br>Speed De<br>D <sub>s</sub> = (EX                      | chibit 13-2)<br>etermination<br>hibit 13-12)             | n                                                 | ,                                       |                                    |  |  |
| evel of Servi<br>$D_R = 5.475 +$ $R = 42.8 \text{ (pc/mi)}$ $DS = F \text{ (Exhibit 1)}$ $Poed Determ$ $Poed S = 1.036 \text{ (Exit)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /ln)<br>3-2)<br><b>nination</b>               | 12                 |                              |              | $LOS = (Ext)$ $Speed De$ $D_s = (Ext)$ $S_R = mph$                 | chibit 13-2) etermination hibit 13-12) n (Exhibit 13-12) | n                                                 |                                         | 30.5                               |  |  |
| D <sub>R</sub> = 5.475 +<br>B <sub>R</sub> = 42.8 (pc/mi<br>DS = F (Exhibit 1<br>DS = F (Exhibit 1<br>DS = 1.036 (Exit<br>B = 41.0 mph (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /ln)<br>3-2)<br><b>nination</b><br>oit 13-11) | 12                 | × .                          |              | $LOS = (Ext)$ $Speed De$ $D_s = (Ext)$ $S_R = mph$                 | chibit 13-2)<br>etermination<br>hibit 13-12)             | n                                                 | - Total                                 |                                    |  |  |

| General Infor                                   |                  | AMPS ANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Site Info     |                                        | there is an in-              | 5 5 1 10                  |                                          |
|-------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------------------------------------|------------------------------|---------------------------|------------------------------------------|
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        |                              |                           |                                          |
| Analyst                                         | HG               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | RHVP 4NB-Ente                | ing Ramp                  | rs. Tadrisir i                           |
| Agency or Company                               |                  | CALL N. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | lunction      | 2 5                                    | 4NB Entering                 |                           | 8 3                                      |
| Date Performed                                  |                  | 07/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | lurisdiction  |                                        | Hamilton                     | er .                      | K 24 24 6                                |
| Analysis Time Period                            | 0.00             | Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>P</i>                      | Analysis Year |                                        | 2013                         |                           |                                          |
| Project Description                             | Redhill Safet    | ty Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2                           | 1             | , ,                                    |                              |                           | F 1 1 84 P                               |
| Inputs                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar ar c                       |               |                                        | 1                            |                           |                                          |
| Jpstream Adj Ramp                               |                  | Freeway Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mber of Lanes, N              | 2             |                                        |                              |                           | Downstream Adj                           |
|                                                 |                  | Ramp Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er of Lanes, N                | . 1           | F 12                                   |                              | * .                       | Ramp                                     |
| g Yes g On                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Length, L                | 500           |                                        |                              |                           |                                          |
|                                                 |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , A                           | 300           |                                        |                              |                           | o Yes o On                               |
| e No o Off                                      |                  | Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lane Length L <sub>D</sub>    | *             |                                        |                              | All .                     | e No o Off                               |
|                                                 | 40               | Freeway Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ume, V <sub>F</sub>           | 3007          | 1                                      | 8 18                         |                           | 9 10 0 01                                |
| <sub>up</sub> = ft                              |                  | Ramp Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne. V <sub>n</sub>            | 937           | 1 1 1 1                                |                              |                           | L <sub>down</sub> = ft                   |
| ор                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               | (6)                                    |                              |                           |                                          |
| $I_{ij} = veh/h$                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e-Flow Speed, S <sub>FF</sub> | 70.0          |                                        |                              |                           | V <sub>Ď</sub> = . veh/h                 |
|                                                 | 1 1 4            | Ramp Free-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow Speed, S <sub>FR</sub>   | 30.0          | · Alexania                             |                              | 4 - 7 - 37 - 2            | J                                        |
| Conversion to                                   | pc/h Ur          | ider Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conditions                    | 2 79.87       |                                        | en a ajalest.                | gra san ansag             | general and a second                     |
| (pc/h)                                          | V                | PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terrain                       | %Truck        | %Rv                                    | f <sub>HV</sub>              | f <sub>p</sub>            | $V = V/PHF \times f_{HV} \times f_{D}$   |
| Freeway                                         | 3007             | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lovel                         | 0             | ^                                      |                              |                           | *** * * * * * * * * * * * * * * * * *    |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                         | 0             | 0                                      | 1.000                        | 1.00                      | 3199                                     |
| Ramp                                            | 937              | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                         | 0             | 0                                      | 1.000                        | 1.00                      | 997                                      |
| JpStream                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | -                            |                           |                                          |
| DownStream                                      |                  | Manua Anasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · see · · · · · ·             |               | 1.1 1.7400 1113                        |                              | • • • • • • • •           | 7 1 1 1 1                                |
| otimation of                                    | ·                | Merge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |               | Fatimati                               |                              | iverge Areas              |                                          |
| stimation of                                    | V <sub>12</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               | Estimati                               | on of v <sub>12</sub>        |                           |                                          |
|                                                 | $V_{12} = V_{F}$ | (P <sub>FM</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |               |                                        | V <sub>12</sub> = 1          | $V_{R} + (V_{F} - V_{R})$ | P <sub>ED</sub>                          |
| EQ =                                            | .0000            | ation 13-6 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r 13-7)                       |               | L <sub>EQ</sub> =                      |                              | Equation 13-              |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        |                              |                           |                                          |
| <sub>FM</sub> =                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion (Exhibit 13-6)           |               | P <sub>FD</sub> =                      | ι                            | ising Equation            | n (Exhibit 13-7)                         |
| 12 =                                            | 3199             | pc/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |               | V <sub>12</sub> =                      | F                            | oc/h                      |                                          |
| <sub>3</sub> or V <sub>av34</sub>               | 0 pc/            | h (Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-14 or 13-17)               |               | V <sub>3</sub> or V <sub>av34</sub>    | ï                            | c/h (Equation 1           | 3-14 or 13-17)                           |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,700   | pc/h? o Ye       | s a No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |               | 150 350 500                            | > 2,700 pc/h? o              |                           |                                          |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * ' |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        |                              |                           |                                          |
| s v <sub>3</sub> or v <sub>av34</sub> > 1.5     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40.40.40                    |               | IS V <sub>3</sub> OI V <sub>av34</sub> | > 1.5 * V <sub>12</sub> /2 0 |                           | 10 10 10 10                              |
| Yes,V <sub>12a</sub> =                          | 13-19            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-16, 13-18, or               |               | If Yes, V <sub>12a</sub> =             |                              | c/n (Equation<br>-19)     | 13-16, 13-18, or                         |
| Capacity Chec                                   |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |               | Capacity                               |                              | -19)                      |                                          |
| apacity offec                                   | Actual           | T (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Canacity                      | 1 100 52      | l                                      |                              | Con                       | ooitu LLOCEO                             |
|                                                 | Actual           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Capacity                      | LOS F?        | 177                                    | Actual                       | Cap                       |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1             | V <sub>F</sub>                         |                              | Exhibit 13-8              |                                          |
| V <sub>FO</sub>                                 | 4196             | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | No            | $V_{FO} = V_{F} -$                     | V <sub>R</sub>               | Exhibit 13-8              |                                          |
| - FO                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | .,,           |                                        |                              | Exhibit 13-               |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               | V <sub>R</sub>                         |                              | 10                        |                                          |
| low Entering                                    | Merge In         | fluence A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rea                           |               | Flow Ent                               | ering Diver                  | ge Influend               | e Area                                   |
| Ĭ                                               | Actual           | The second secon | Desirable                     | Violation?    |                                        | Actual                       | Max Desira                | CONTRACTOR OF THE PERSON NAMED IN COLUMN |
| V <sub>R12</sub>                                | 4196             | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4600:All                      | No            | V <sub>12</sub>                        |                              | Exhibit 13-8              |                                          |
| evel of Service                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | Service Det                  |                           | (if not E)                               |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        |                              |                           |                                          |
| $D_R = 5.475 + 0$                               | 1.4.6            | J.UU/8 V <sub>12</sub> - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10021 LA                      |               |                                        | R = 4.252 + 0.0              | 0.0 V <sub>12</sub> - 0.0 | ina r <sup>D</sup>                       |
| a = 34.6 (pc/mi/l                               | n)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               | D <sub>R</sub> = (pc                   | :/mi/ln)                     |                           |                                          |
| OS = D (Exhibit 13                              | 3-2)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               | LOS = (Ex                              | chibit 13-2)                 |                           |                                          |
| peed Determi                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 137           | Speed De                               | eterminatio                  | i                         |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | nibit 13-12)                 |                           |                                          |
| = 0.550 (Exibit                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        |                              |                           |                                          |
| = 54.6 mph (E                                   | khibit 13-11)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | (Exhibit 13-12)              |                           |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                                        | (F. J. 1) 14 40 401          |                           |                                          |
| K NORMAN NA ANALASAN                            | hibit 13-11)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | i i           | $S_0 = mph$                            | (Exhibit 13-12)              |                           |                                          |
|                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1             |                                        | (Exhibit 13-12)              |                           |                                          |

HAM0064439\_0001 RHV0001045

|                                                                      | 7 3 4 5 A                        | RAME                         | S AND RAM                          | IP JUNCT                                                  | IONS WO                                | RKS          | HEET            | h di idi                                          |                     | 4.1                |
|----------------------------------------------------------------------|----------------------------------|------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------------------|--------------|-----------------|---------------------------------------------------|---------------------|--------------------|
| General Info                                                         | rmation                          | 1.71.                        |                                    | Site Infor                                                | mation                                 | 1 .          |                 |                                                   |                     |                    |
| Analyst<br>Agency or Compan<br>Date Performed<br>Analysis Time Perio | 23/0                             | A<br>7/2013<br>Peak Hour     | ال<br>ال                           | reeway/Dir of T<br>unction<br>urisdiction<br>nalysis Year |                                        |              | xiting Ram      | ng Ramp<br>np                                     |                     | · ·                |
| Project Description                                                  |                                  |                              | *                                  |                                                           | F + 7                                  |              |                 | 2                                                 |                     |                    |
| Inputs                                                               | 4,7.76                           |                              |                                    |                                                           | 1 - F - F - F                          |              | F + +           |                                                   |                     |                    |
| Upstream Adj                                                         | Ramp                             |                              | nber of Lanes, N<br>er of Lanes, N | 3 2                                                       |                                        |              |                 |                                                   | Downstre<br>Ramp    | am Adj             |
| o Yes                                                                | On On                            | Acceleration                 | Lane Length, L <sub>A</sub>        |                                                           |                                        |              |                 |                                                   | o Yes               | o On               |
| e No                                                                 | Off                              | Deceleration<br>Freeway Volu | Lane Length L <sub>D</sub>         | 500<br>2194                                               | d a                                    |              |                 |                                                   | е No                | o Off              |
| L <sub>up</sub> =                                                    | ft                               | Ramp Volum                   |                                    | 559                                                       | , E.S.                                 |              |                 | 90° K                                             | L <sub>down</sub> = | ft                 |
| . u ,                                                                | /eh/h                            | Ramp Free-F                  | low Speed, S <sub>FR</sub>         | 70.0                                                      | . 1 8 4                                | . 1          |                 | ,,                                                | V <sub>D</sub> = .  | veh/h              |
| Conversion                                                           | to pc/h Un                       | der Base                     | Conditions                         | 20 2 4 4                                                  | F 40 1000 4 10                         |              | * * ± ±         | ng grap di ketind                                 | in appear           |                    |
| (pc/h)                                                               | (Veh/hr)                         | PHF                          | Terrain                            | : %Truck                                                  | %Rv                                    |              | f <sub>HV</sub> | f <sub>p</sub>                                    | v = V/PHF           | $x f_{HV} x f_{p}$ |
| Freeway                                                              | 2194                             | 0.94                         | Level                              | 0                                                         |                                        | 1.           | .000: :         | 1.00                                              | 23                  | 34                 |
| Ramp                                                                 | 559                              | 0.94                         | Level                              | 0                                                         | 0                                      | 1.           | .000            | 1.00                                              | 5                   | 95                 |
| UpStream                                                             | 4 5 69                           |                              |                                    |                                                           | * * * * **                             | -            |                 |                                                   |                     |                    |
| DownStream                                                           |                                  | Merge Areas                  |                                    |                                                           |                                        |              |                 | Diverge Areas                                     |                     |                    |
| stimation o                                                          |                                  | merge 7 a cae                |                                    |                                                           | Estimati                               | on o         |                 | orreige / il cue                                  |                     |                    |
|                                                                      | V <sub>12</sub> = V <sub>F</sub> | (P)                          |                                    |                                                           | <del> </del>                           |              |                 | V <sub>R</sub> + (V <sub>F</sub> - V <sub>F</sub> | \P                  |                    |
| _ =                                                                  |                                  | tion 13-6 or                 | 12.7\                              |                                                           |                                        |              |                 | Equation 13-1                                     |                     | v.                 |
| EQ =                                                                 |                                  |                              |                                    |                                                           | L <sub>EQ</sub> =                      |              |                 |                                                   |                     |                    |
| FM =                                                                 |                                  | Equation (I                  | ZXIIIDIL 13-0)                     |                                                           | P <sub>FD</sub> =                      |              |                 | 450 using Equ                                     | lation (Exni        | DIT 13-7)          |
| 12 =                                                                 | pc/h                             |                              |                                    |                                                           | V <sub>12</sub> =                      |              |                 | 378 pc/h                                          |                     | 18720 187208       |
| 3 or V <sub>av34</sub>                                               |                                  |                              | -14 or 13-17)                      |                                                           | V <sub>3</sub> or V <sub>av34</sub>    |              |                 | 56 pc/h (Equa                                     | tion 13-14          | or 13-17)          |
| $V_3 \text{ or } V_{av34} > 2,70$                                    |                                  |                              |                                    |                                                           |                                        |              |                 | Yes a No                                          |                     |                    |
| $V_3 \text{ or } V_{av34} > 1.5$                                     |                                  |                              |                                    |                                                           | Is V <sub>3</sub> or V <sub>av34</sub> | > 1.5        |                 | Yes @ No                                          |                     |                    |
| Yes,V <sub>12a</sub> =                                               | pc/h (<br>13-19)                 | Equation 13                  | -16, 13-18, or                     |                                                           | If Yes, V <sub>12a</sub> =             |              | p<br>19         | c/h (Equation                                     | 13-16, 13-          | 18, or 13-         |
| Capacity Che                                                         |                                  |                              |                                    |                                                           | Capacity                               | Chi          |                 | 3)                                                |                     |                    |
| apacity circ                                                         | Actual                           | 1 0                          | apacity                            | LOS F?                                                    | 1                                      |              | Actual          | Ca                                                | pacity              | LOS F              |
|                                                                      |                                  |                              |                                    |                                                           | V <sub>F</sub>                         |              | 2334            | Exhibit 13-8                                      | _                   | No                 |
| $V_{FO}$                                                             |                                  | Exhibit 13-8                 |                                    | İ                                                         | $V_{FO} = V_{F}$                       | Vn           | 1739            | Exhibit 13-8                                      | 7200                | No                 |
| - 40                                                                 |                                  | LAMBIC 10 0                  |                                    |                                                           | V <sub>R</sub>                         | R            | 595             | Exhibit 13-10                                     |                     | No                 |
| low Entering                                                         | Morgo In                         | fluonos A                    | *00                                |                                                           |                                        | orin         |                 | rge Influen                                       |                     | 1 110              |
| low Entering                                                         | Actual                           |                              | Desirable                          | Violation?                                                | FIOW EIIL                              | -            | ctual           | Max Desirab                                       |                     | Violation?         |
| V <sub>R12</sub>                                                     | AGIUAI                           | Exhibit 13-8                 | Desirable                          | Violadori:                                                | V <sub>12</sub>                        | -            | 378             | Exhibit 13-8                                      | 4400:All            | No                 |
| evel of Serv                                                         | ico Dotorn                       |                              | f not E)                           |                                                           |                                        |              |                 | termination                                       |                     |                    |
| $D_R = 5.475 + 0.$                                                   |                                  |                              |                                    |                                                           | _                                      | # L T T T T  |                 | .0086 V <sub>12</sub> - 0.0                       |                     | /                  |
| - 1.0                                                                |                                  | 3.0070 112                   | 0.00027                            |                                                           |                                        | R .<br>(pc/n |                 | 12                                                | 200 ZD              |                    |
| = (pc/mi/ln                                                          | · .                              |                              |                                    |                                                           | 14.5                                   |              |                 |                                                   |                     |                    |
| S = (Exhibit                                                         |                                  |                              |                                    |                                                           |                                        |              | it 13-2)        |                                                   |                     |                    |
| peed Detern                                                          |                                  |                              |                                    |                                                           | Speed De                               |              |                 |                                                   |                     |                    |
| s = (Exibit 13                                                       | ,                                |                              |                                    |                                                           | -                                      |              | chibit 13-      |                                                   |                     |                    |
|                                                                      | ibit 13-11)                      |                              |                                    | 1                                                         |                                        |              | (Exhibit        |                                                   |                     |                    |
| = mph (Exh                                                           | ibit 13-11)                      |                              |                                    |                                                           |                                        |              | (Exhibit        |                                                   |                     |                    |
|                                                                      | ibit 13-13)                      |                              |                                    |                                                           | S = 63.4                               | mph          | (Exhibit        | 13-13)                                            |                     |                    |
| yright © 2012 Unive                                                  | ersity of Florida, A             | II Rights Reserv             | ed                                 | -40                                                       | HCS2010 <sup>TM</sup> V                | ersion       | 6.41            | Gene                                              | erated: 18/09/      | 2013 3:10          |

| Tay - 1 - 1 - 1 - 1 - 1                       |                  | RAME                     | S AND RAM                                    | IP JUNCT                                  | ONS WC                                | RKS                | HEET              |                              |                      |                    |
|-----------------------------------------------|------------------|--------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|--------------------|-------------------|------------------------------|----------------------|--------------------|
| General Info                                  | rmation          |                          | -                                            | Site Infor                                | mation                                |                    | iliani,           |                              |                      |                    |
| Analyst<br>Agency or Compan<br>Date Performed | / CIM            | A<br>07/2013             | - Ju                                         | reeway/Dir of T<br>unction<br>urisdiction |                                       | 4 4                | xiting Ram        | ng Ramp                      |                      | r <u>4,</u> = 2    |
| Analysis Time Perio                           | d PM             | Peak Hour                | A                                            | nalysis Year                              |                                       | 2013               |                   |                              |                      |                    |
| Project Description                           | REdhill Safety   | Study -                  | SALE AND |                                           | 1111                                  | + 1                | 45                |                              | e 111                |                    |
| Inputs                                        |                  |                          |                                              |                                           | 3, 4 T                                | × 2                | -/                |                              |                      |                    |
| Upstream Adj F                                | Ramp             | The state of             | nber of Lanes, N<br>er of Lanes, N           | 3<br>2                                    |                                       |                    |                   |                              | Downstre<br>Ramp     | am Adj             |
| o Yes                                         | On               |                          | Lane Length, L <sub>A</sub>                  |                                           |                                       |                    |                   | *                            | <sub>0</sub> Yes     | o On               |
| e No                                          | Off              | 1                        | Lane Length L <sub>D</sub>                   | 500                                       |                                       |                    |                   |                              | e No                 | o Off              |
| 1 - 1                                         | 4 .              | Freeway Volu             |                                              | 2770                                      | (E) (E) (E)                           |                    | 191 4             |                              | . =                  | ft                 |
| L <sub>up</sub> =                             | ft               | Ramp Volum               | 13                                           | 1289                                      |                                       |                    |                   |                              | L <sub>down</sub> =  | 11.                |
| $V_u = v$                                     | eh/h             |                          | Flow Speed, S <sub>FF</sub>                  | 70.0                                      |                                       |                    |                   | . A                          | V <sub>D</sub> =     | veh/h              |
|                                               | h                | Ramp Free-F              | low Speed, S <sub>FR</sub>                   | 35.0                                      | ta ki sa izi                          | v ".               |                   | A CONTRACT                   |                      | 3 F                |
| Conversion t                                  | o pc/h Un        | der Base                 | Conditions                                   |                                           | 1 1/4 1/2                             |                    |                   |                              | reaching the same of |                    |
| (pc/h)                                        | V<br>(Veh/hr)    | PHF                      | Terraln.                                     | %Truck                                    | %Rv                                   |                    | f <sub>HV</sub> . | f <sub>p</sub>               | v = V/PHF            | $x f_{HV} x f_{p}$ |
| Freeway                                       | 277.0::::        | 0.94                     | . Level                                      | 0                                         | 0:: :                                 | -                  | 000:              | 1.00                         |                      | 47: : :.           |
| Ramp                                          | 1289             | 0.94                     | Level                                        | 0                                         | 0                                     | 1.                 | 000.              | 1.00                         | 13                   | 371                |
| JpStream<br>DownStream                        | *** *** *        | 1. 2.00 (0)              |                                              |                                           |                                       | +-                 |                   | 2                            |                      |                    |
| DOWNStream                                    |                  | Merge Areas              |                                              |                                           |                                       |                    | i                 | Diverge Areas                |                      |                    |
| stimation of                                  |                  |                          |                                              |                                           | Estimati                              | ion o              | fvan              |                              |                      |                    |
|                                               |                  | /D )                     |                                              |                                           |                                       |                    |                   | -1/ + ///                    | / \D                 |                    |
| _                                             | $V_{12} = V_F$   |                          | 40.7)                                        |                                           |                                       |                    |                   | $=V_R + (V_F - V_F)$         |                      |                    |
| <u>=</u> Ω =                                  |                  | ation 13-6 or            |                                              |                                           | L <sub>EQ</sub> =                     |                    |                   | Equation 13                  |                      |                    |
| FM =                                          | _                | Equation (               | exhibit 13-6)                                |                                           | P <sub>FD</sub> =                     |                    |                   | 450 using E                  | quation (Exhi        | bit 13-7)          |
| 12 =                                          | pc/h             |                          |                                              |                                           | V <sub>12</sub> =                     |                    |                   | 080 pc/h                     |                      |                    |
| <sub>3</sub> or V <sub>av34</sub>             |                  |                          | -14 or 13-17)                                |                                           | V <sub>3</sub> or V <sub>av34</sub>   |                    |                   | 67 pc/h (Equ                 |                      | or 13-17)          |
| $V_3 \text{ or } V_{av34} > 2,70$             |                  |                          |                                              |                                           |                                       |                    |                   | Yes e No                     |                      |                    |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * |                  |                          | 10 10 10                                     |                                           | ls V <sub>3</sub> or V <sub>av3</sub> | <sub>4</sub> > 1.5 |                   | Yes a No                     |                      |                    |
| Yes,V <sub>12a</sub> =                        | pc/h (<br>13-19) |                          | -16, 13-18, or                               |                                           | If Yes,V <sub>12a</sub> =             |                    | p<br>19           | c/h (Equatio                 | n 13-16, 13-         | 18, or 13-         |
| Capacity Che                                  |                  |                          |                                              |                                           | Capacity                              | , Che              |                   | <u> </u>                     |                      |                    |
| apaony one                                    | Actual           | T 0                      | apacity                                      | LOS F?                                    | l                                     | T                  | Actual            | 1 0                          | Capacity             | LOS F?             |
|                                               | 7 (0100)         | l i                      |                                              |                                           | V <sub>F</sub>                        | $\neg \uparrow$    | 2947              | Exhibit 13                   |                      | No                 |
| V <sub>FO</sub>                               |                  | Exhibit 13-8             |                                              |                                           | $V_{FO} = V_{F}$                      | - V-               | 1576              | Exhibit 13                   |                      | No                 |
| FO .                                          |                  | LAMBIE 10 0              |                                              |                                           | V <sub>R</sub>                        | R                  | 1371              | Exhibit 13-                  |                      |                    |
|                                               |                  |                          |                                              | <u></u>                                   |                                       |                    |                   | W. 100-0534 200-0400 12 200- |                      | No                 |
| low Entering                                  |                  |                          |                                              | \                                         | Flow En                               | _                  |                   | rge Influei                  |                      | Violation?         |
|                                               | Actual           |                          | Desirable                                    | Violation?                                | 17                                    | +-                 | ctual             | Max Desira                   | 4400:All             |                    |
| V <sub>R12</sub>                              |                  | Exhibit 13-8             |                                              |                                           | V <sub>12</sub>                       |                    | 080               | Exhibit 13-8                 |                      | No                 |
| evel of Serv                                  |                  |                          |                                              |                                           |                                       |                    |                   | terminatio                   |                      | -)                 |
| $D_R = 5.475 + 0.0$                           |                  | 0.0078 V <sub>12</sub> - | 0.00627 L <sub>A</sub>                       |                                           |                                       |                    |                   | .0086 V <sub>12</sub> - 0    | 0.009 L <sub>D</sub> |                    |
| e (pc/mi/ln)                                  | )                |                          |                                              | 9.                                        |                                       | (pc/m              | 30.               |                              |                      |                    |
| OS = (Exhibit 1                               | 3-2)             |                          |                                              |                                           | LOS = A (                             | Exhib              | it 13-2)          |                              |                      |                    |
| peed Detern                                   | nination         |                          | *                                            | ,                                         | Speed D                               | eterr              | ninatio           | n                            |                      | -                  |
| s= (Exibit 13                                 |                  |                          |                                              |                                           | $D_{s} = 0.5$                         | 51 (Ex             | chibit 13-        | 12)                          |                      |                    |
|                                               | ibit 13-11)      |                          |                                              |                                           | S <sub>R</sub> = 54.                  | 6 mph              | (Exhibit          | 13-12)                       |                      |                    |
|                                               | ibit 13-11)      |                          |                                              |                                           |                                       | 8 mph              | (Exhibit          | 13-12)                       |                      |                    |
|                                               |                  |                          |                                              |                                           |                                       | 4.0                |                   |                              |                      |                    |
|                                               | bit 13-13)       |                          |                                              |                                           |                                       | 6 mph              | (Exhibit          | 13-13)                       |                      |                    |

| General innon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mation                                                                                                                                |                                                        |                                           | Site Info         | rmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H + + + 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tent 1 at 1                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HG                                                                                                                                    | -                                                      |                                           | Freeway/Dir of T  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RHVP 6NR Evit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-1, 10                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Agency or Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIN                                                                                                                                   |                                                        |                                           | Junction          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6NB Exiting Rai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X 10 1 T                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | 07/2013                                                |                                           | Jurisdiction      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iip <sub>.</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | Peak Hour                                              |                                           | Analysis Year     | V 100 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                        |                                           | 7 Indiyolo 1 oca  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | recomm outou                                                                                                                          | y diddy                                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                              | Freeway Nu                                             | mber of Lanes, N                          | 2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upstream Adj Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | amp                                                                                                                                   |                                                        |                                           | 4. 4.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 7 4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Downstre                                                             | am Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| o Yes o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On                                                                                                                                    | ,                                                      | er of Lanes, N                            | 1 .               | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ramp                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 res 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On                                                                                                                                    | Acceleration                                           | Lane Length, LA                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o Yes                                                                | o On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e No o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Off                                                                                                                                   | Deceleration                                           | Lane Length L <sub>D</sub>                | 500               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NI-                                                                  | 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | Freeway Vol                                            | ume, V <sub>F</sub>                       | 3798              | 1000 N F 30 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e No                                                                 | o Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L <sub>up</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | Ramp Volum                                             |                                           | 301               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>down</sub> =                                                  | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ф                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                        | e-Flow Speed, S <sub>F</sub>              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>11</sub> = ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h/h                                                                                                                                   |                                                        |                                           |                   | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_D =$                                                              | veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                        | low Speed, S <sub>FR</sub>                | 35.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Tan - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conversion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pc/h Un                                                                                                                               | der Base                                               | Conditions                                |                   | OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a service and a service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.35.e3                                                             | er ter i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                     | PHF                                                    | Terrain                                   | %Truck            | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f <sub>HV</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y = V/PHF                                                            | x f <sub>uv</sub> , x f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Veh/hr)                                                                                                                              |                                                        |                                           | 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Freeway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3798                                                                                                                                  | 0.94                                                   | Level                                     |                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 301                                                                                                                                   | 0.94                                                   | Level                                     | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UpStream<br>DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                        | La La                                     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JownSueam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       | Merge Areas                                            |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | merge racus                                            |                                           |                   | Fetimati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on of v <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | biverge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -Stillation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |                                                        |                                           |                   | LStillati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{12} = V_{F}$                                                                                                                      | (P <sub>FM</sub> )                                     |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= V_R + (V_F - V_F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R)P <sub>FD</sub>                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Equa                                                                                                                                 | ation 13-6 or                                          | 13-7)                                     |                   | L <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Equation 13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 or 13-13                                                           | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P <sub>FM</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | using                                                                                                                                 | Equation (                                             | Exhibit 13-6)                             |                   | P <sub>FD</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .000 using Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uation (Exh                                                          | ibit 13-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                        |                                           |                   | E (-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pc/h                                                                                                                                  |                                                        |                                           |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| / <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pc/h                                                                                                                                  | Fauation 13                                            | L14 or 13-17)                             |                   | V <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 040 pc/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| / <sub>12</sub> =<br>/ <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pc/h (                                                                                                                                |                                                        | 3-14 or 13-17)                            |                   | V <sub>12</sub> =<br>V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 040 pc/h<br>pc/h (Equatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>12</sub> =<br>V <sub>3</sub> or V <sub>av34</sub><br>s V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pc/h (pc/h? O Ye                                                                                                                      | s o No                                                 | 3-14 or 13-17)                            |                   | $V_{12} = V_3 \text{ or } V_{av34}$ Is $V_3 \text{ or } V_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>0<br>2,700 pc/h?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 040 pc/h<br>pc/h (Equatio<br>o Yes e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>12</sub> =<br>V <sub>3</sub> or V <sub>av34</sub><br>s V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pc/h (<br>pc/h? <sub>0</sub> Ye<br>V <sub>12</sub> /2 <sub>0</sub> Ye                                                                 | s o No<br>s o No                                       |                                           |                   | $V_{12} = V_3 \text{ or } V_{av34}$ Is $V_3 \text{ or } V_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>0<br>4 > 2,700 pc/h?<br>4 > 1.5 * V <sub>12</sub> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 040 pc/h<br>pc/h (Equatio<br>o Yes e No<br>o Yes e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on 13-14 o                                                           | r 13-17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $V_{12} = V_{3} \text{ or } V_{av34} $<br>s $V_{3} \text{ or } V_{av34} > 2,700$<br>s $V_{3} \text{ or } V_{av34} > 1.5 * V_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h (<br>pc/h? <sub>0</sub> Ye<br>V <sub>12</sub> /2 <sub>0</sub> Ye<br>pc/h (                                                       | s o No<br>s o No<br>Equation 13                        | 3-14 or 13-17)<br>3-16, 13-18, or         |                   | $V_{12} = V_3 \text{ or } V_{av34}$ Is $V_3 \text{ or } V_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>0<br>1 > 2,700 pc/h?<br>1 > 1.5 * V <sub>12</sub> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 040 pc/h<br>pc/h (Equation<br>o Yes e No<br>o Yes e No<br>pc/h (Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on 13-14 o                                                           | r 13-17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 112 =<br>3 or V <sub>av34</sub><br>s V <sub>3</sub> or V <sub>av34</sub> > 2,700<br>s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \<br>Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pc/h (<br>pc/h? <sub>0</sub> Ye<br>V <sub>12</sub> /2 <sub>0</sub> Ye<br>pc/h (<br>13-19)                                             | s o No<br>s o No<br>Equation 13                        |                                           |                   | $V_{12} = V_3 \text{ or } V_{av34} \\ \text{Is } V_3 \text{ or } V_{av34} \\ \text{Is } V_3 \text{ or } V_{av34} \\ \text{If Yes,} V_{12a} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>0<br>1 > 2,700 pc/h?<br>1 > 1.5 * V <sub>12</sub> /2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 040 pc/h<br>pc/h (Equatio<br>o Yes e No<br>o Yes e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on 13-14 o                                                           | r 13-17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} > 2,700 $ s $V_{3} \text{ or } V_{av34} > 1.5 * V_{2a} = V_{12a} = V_{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pc/h ( pc/h? 0 Ye  /12/2 0 Ye  pc/h ( 13-19)                                                                                          | s <sub>0</sub> No<br>s <sub>0</sub> No<br>(Equation 13 | 1-16, 13-18, or                           | 106 E3            | $V_{12} =$ $V_3$ or $V_{av34}$ Is $V_3$ or $V_{av34}$ Is $V_3$ or $V_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>0<br>1 > 2,700 pc/h?<br>2 > 1.5 * V <sub>12</sub> /2<br>1<br>1 * Checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040 pc/h pc/h (Equation of Yes of No of Yes of No of Yes of No of Yes of No of | on 13-14 o                                                           | r 13-17)<br>-18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>12</sub> =<br>V <sub>3</sub> or V <sub>av34</sub><br>s V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pc/h (<br>pc/h? <sub>0</sub> Ye<br>V <sub>12</sub> /2 <sub>0</sub> Ye<br>pc/h (<br>13-19)                                             | s <sub>0</sub> No<br>s <sub>0</sub> No<br>(Equation 13 |                                           | LOS F?            | $V_{12} = V_3 \text{ or } V_{av34} = V_{av34$     | 2,700 pc/h?<br>> 2,700 pc/h?<br>> 1.5 * V <sub>12</sub> /2<br>1<br>* * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 040 pc/h pc/h (Equation of Yes of No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on 13-14 o<br>13-16, 13                                              | r 13-17)<br>-18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} > 2,700 $ s $V_{3} \text{ or } V_{av34} > 1.5 \text{ s}$ $V_{2} = V_{12a} = V_{2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pc/h ( pc/h? 0 Ye  /12/2 0 Ye  pc/h ( 13-19)                                                                                          | s o No<br>s o No<br>Equation 13                        | 1-16, 13-18, or                           | LOS F?            | $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} = V_{5} = $         | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 040 pc/h pc/h (Equation of Yes of No of Yes of No of Yes of No of Yes of No of | on 13-14 o<br>13-16, 13                                              | r 13-17)<br>-18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 112 =<br>3 or V <sub>av34</sub><br>s V <sub>3</sub> or V <sub>av34</sub> > 2,700<br>s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \<br>Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pc/h ( pc/h? 0 Ye  /12/2 0 Ye  pc/h ( 13-19)                                                                                          | s <sub>0</sub> No<br>s <sub>0</sub> No<br>(Equation 13 | 1-16, 13-18, or                           | LOS F?            | $V_{12} = V_3 \text{ or } V_{av34} = V_{av34$     | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 040 pc/h pc/h (Equation of Yes of No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-16, 13 pacity 4800                                                | r 13-17)<br>-18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} > 2,700 $ s $V_{3} \text{ or } V_{av34} > 1.5 \text{ s}$ $V_{2} = V_{12a} = V_{2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pc/h ( pc/h? 0 Ye  /12/2 0 Ye  pc/h ( 13-19)                                                                                          | s o No<br>s o No<br>Equation 13                        | 1-16, 13-18, or                           | LOS F?            | $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{av34} = V_{5} = $         | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 040 pc/h pc/h (Equatic o Yes a No o Yes a No oc/h (Equation 9)  Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13-16, 13  pacity 4800 4800                                          | -18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 = 3 or V <sub>av34</sub> \$ V <sub>3</sub> or V <sub>av34</sub> > 2,700 \$ V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V Yes,V <sub>12a</sub> = Capacity Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h ( pc/h? 0 Ye  V <sub>12</sub> /2 0 Ye pc/h ( 13-19)  KS  Actual                                                                  | s o No<br>s o No<br>(Equation 13                       | i-16, 13-18, or<br>Capacity               | LOS F?            | $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{4} = V$ | 2,700 pc/h?<br>1 > 1.5 * V <sub>12</sub> /2<br>1 * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 040 pc/h pc/h (Equation of Yes of No of Yes of No of Yes of No of Yes of No of Heritage (Equation of Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13-16, 13  pacity 4800 4800 2000                                     | -18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 = 3 or V <sub>av34</sub> \$ V <sub>3</sub> or V <sub>av34</sub> > 2,700 \$ V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V Yes,V <sub>12a</sub> = Capacity Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) Eks Actual                                                                    | s o No s o No (Equation 13)  Exhibit 13-8              | 1-16, 13-18, or Capacity                  |                   | $V_{12} = V_{3} \text{ or } V_{av34} = V_{3} \text{ or } V_{4} = V$ | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 040 pc/h pc/h (Equation of Yes of No of Yes of No of Yes of No of Yes of No of Herman (Equation of Polymer (Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13-16, 13  pacity 4800 4800 2000  ce Area                            | -18, or 13 -18, or 13 -18, or 13 -18, or 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 = 3 or V <sub>av34</sub> s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V Yes,V <sub>12a</sub> = Capacity Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pc/h ( pc/h? 0 Ye  V <sub>12</sub> /2 0 Ye pc/h ( 13-19)  KS  Actual                                                                  | Exhibit 13-8                                           | i-16, 13-18, or<br>Capacity               | LOS F? Violation? | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,700 pc/h?   2   1.5 * V <sub>12</sub> /2   1   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 040 pc/h pc/h (Equation o Yes e No o Yes e No oc/h (Equation e)  Cal Exhibit 13-8 Exhibit 13-10  rge Influence Max Desirab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13-16, 13  pacity 4800 4800 2000  ce Area                            | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> \$ V <sub>3</sub> or V <sub>av34</sub> > 2,700 \$ V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \ Yes, V <sub>12a</sub> = Capacity Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual                                                                     | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8               | apacity  Area Desirable                   |                   | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actual   A | 040 pc/h pc/h (Equation 0 Yes @ No 0 Yes @ No 0 Can Exhibit 13-8 Exhibit 13-10  rge Influence Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13-16, 13  13-16, 13  13-16, 13  4800 4800 2000  ce Area le 4400:All | 13-17) -18, or 13 -18, |
| $V_{R12}$ = $V_{AV34}$ > 2,700 s $V_{AV34}$ > 2,700 s $V_{AV34}$ > 1.5 * $V_{AV34}$ > 1.5 * $V_{AV34}$ = $V_{AV34}$ Capacity Checomorphisms $V_{AV34}$ = $V_{AV3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) Ks Actual  Merge In Actual                                                    | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable |                   | $V_{12} = V_{3} \text{ or } V_{av34}$ $ s \ V_{3} \text{ or } V_{av34} $ $ s \ V_{3} \text{ or } V_{av34} $ $ f \ Yes, V_{12a} = Capacity$ $V_{F} V_{FO} = V_{F} - V_{R}$ $ f \ V_{12} \ V_{12} \ V_{12} \ V_{12}$ $ f \ V_{12} \ V_{12} \ V_{12} \ V_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,700 pc/h?   > 1.5 * V <sub>12</sub> /2   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Can Exhibit 13-8 Exhibit 13-8 Exhibit 13-10 Tree Influence Max Desirab Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 13 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V Yes,V <sub>12a</sub> = 2apacity Chec V <sub>FO</sub> Flow Entering V <sub>R12</sub> evel of Service D <sub>R</sub> = 5.475 + 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) Ks Actual  Merge In Actual                                                    | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable |                   | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,700 pc/h?   > 1.5 * V <sub>12</sub> /2   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040 pc/h pc/h (Equation 0 Yes @ No 0 Yes @ No 0 Can Exhibit 13-8 Exhibit 13-10  rge Influence Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| $V_{R12}$ = $V_{AV34}$ > 2,700 s $V_{AV34}$ > 2,700 s $V_{AV34}$ > 1.5 * $V_{AV34}$ > 1.5 * $V_{AV34}$ = $V_{AV34}$ Capacity Checomorphisms $V_{AV34}$ = $V_{AV3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) Ks Actual  Merge In Actual                                                    | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable |                   | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,700 pc/h?   > 1.5 * V <sub>12</sub> /2   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Can Exhibit 13-8 Exhibit 13-8 Exhibit 13-10 Tree Influence Max Desirab Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \ Yes,V <sub>12a</sub> = Capacity Chec V <sub>FO</sub> Flow Entering V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 R = (pc/mi/ln)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual  Merge In Actual                                                    | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable |                   | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent  V <sub>12</sub> Level of S  D <sub>R</sub> = 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual   A | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Can Exhibit 13-8 Exhibit 13-8 Exhibit 13-10 Tree Influence Max Desirab Exhibit 13-8 Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \ Yes,V <sub>12a</sub> = Capacity Chec V <sub>FO</sub> V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 R = (pc/mi/ln) DS = (Exhibit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual  Merge In Actual  ce Determ 0734 v <sub>R</sub> + ( 3-2)            | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable |                   | $V_{12} = V_{3} \text{ or } V_{av34}$ $\text{Is } V_{3} \text{ or } V_{av34}$ $\text{Is } V_{3} \text{ or } V_{av34}$ $\text{If } Yes, V_{12a} = $ $\begin{array}{c} V_{F} \\ V_{FO} = V_{F} - \\ V_{R} \\ \end{array}$ $\begin{array}{c} V_{F} \\ V_{12} \\ \end{array}$ $\begin{array}{c} V_{12} \\ V_{13} \\ \end{array}$ $\begin{array}{c} V_{12} \\ V_{13} \\ \end{array}$ $\begin{array}{c} V_{13} \\ V_{14} \\ \end{array}$ $\begin{array}{c} V_{14} \\ V_{15} \\ \end{array}$ $\begin{array}{c} V_{15} \\ V_{15} \\ \end{array}$ $\begin{array}{c} V_{15} \\ V_{15} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual   A | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Call Exhibit 13-8 Exhibit 13-8 Exhibit 13-10  Tree Influence Max Desirab Exhibit 13-8 Exhibit 13-8 Exhibit 13-8 Exhibit 13-0 0086 V <sub>12</sub> - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * V Yes,V <sub>12a</sub> = Capacity Chec  V <sub>FO</sub> Flow Entering  V <sub>R12</sub> evel of Service D <sub>R</sub> = 5.475 + 0.00 R = (pc/mi/ln) DS = (Exhibit 13) Epeed Determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h ( pc/h <sup>2</sup> o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) Eks Actual  Merge In Actual  Ce Detern 0734 v R + ( 3-2)  ination | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable | Violation?        | $V_{12} = V_{3} \text{ or } V_{av34}$ $ s V_{3} \text{ or } V_{av34} $ $ s V_{3} \text{ or } V_{av34} $ $ s V_{3} \text{ or } V_{av34} $ $ f Yes, V_{12a} = Capacity$ $V_{F} V_{FO} = V_{F} - V_{R}$ $ F V_{FO} = V_{F} - V_{R} $ $ V_{12} = V_{12} $ $ V_{13} = V_{12} $ $ V_{14} = V_{12} $ $ V_{15} = V_{15} $ $ V_{15} = V_{1$     | 2,700 pc/h?   > 1.5 * V <sub>12</sub> /2   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040 pc/h pc/h (Equation 0 Yes a No 0 Yes a N | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \ Yes,V <sub>12a</sub> = Capacity Chec V <sub>FO</sub> Flow Entering V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 R <sub>E</sub> = (pc/mi/ln) DS = (Exhibit 13-1) Epeed Determing S = (Exibit 13-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual  Merge In Actual  ce Determ 0734 v R + ( 3-2) ination  11)          | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable | Violation?        | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent  V <sub>12</sub> Level of S  D <sub>R</sub> = 34.5 LOS = D (B  Speed De  0, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actual   4040   Actual   404 | 040 pc/h pc/h (Equation 0 Yes a No 0 Yes a N | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 13 or V <sub>av34</sub> 15 v <sub>3</sub> or V <sub>av34</sub> > 2,700 15 v <sub>3</sub> or V <sub>av34</sub> > 2,700 15 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 16 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 17 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 18 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 19 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 19 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>av34</sub> > 1.5 * v <sub>4</sub> 10 v <sub>4</sub> or V <sub>4</sub> or V <sub>4</sub> 10 v <sub>4</sub> or V <sub>4</sub> or V <sub>4</sub> 10 v <sub>4</sub> or V <sub>4</sub> or V <sub>4</sub> 10 v <sub>4</sub> or V <sub>4</sub> o | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual  Merge In Actual  ce Determ 0734 v R + ( 3-2) ination  11)          | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable | Violation?        | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent  V <sub>12</sub> Level of S  D <sub>R</sub> = 34.5 LOS = D (II  Speed De  D <sub>s</sub> = 0.45 S <sub>R</sub> = 57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actual   4040   Actual   404 | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Call Exhibit 13-8 Exhibit 13-8 Exhibit 13-10  Tree Influence Max Desirab Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |
| 12 = 3 or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 2,700 s V <sub>3</sub> or V <sub>av34</sub> > 1.5 * \ Yes,V <sub>12a</sub> = Capacity Chec V <sub>FO</sub> Flow Entering V <sub>R12</sub> evel of Servic D <sub>R</sub> = 5.475 + 0.00 R <sub>E</sub> = (pc/mi/ln) DS = (Exhibit 13-1) Epeed Determing S = (Exibit 13-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pc/h ( pc/h? o Ye V <sub>12</sub> /2 o Ye pc/h ( 13-19) ks Actual  Merge In Actual  ce Determ 0734 v R + ( 3-2) ination  11)          | Exhibit 13-8  Exhibit 13-8  Exhibit 13-8  Exhibit 13-8 | i-16, 13-18, or Capacity  Lirea Desirable | Violation?        | V <sub>12</sub> = V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> Is V <sub>3</sub> or V <sub>av34</sub> If Yes,V <sub>12a</sub> =  Capacity  V <sub>F</sub> V <sub>FO</sub> = V <sub>F</sub> V <sub>R</sub> Flow Ent  V <sub>12</sub> Level of S  LOS = D (I  Speed De  D <sub>s</sub> = 0.45 S <sub>R</sub> = 57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actual   4040   Actual   404 | 040 pc/h pc/h (Equation 0 Yes e No 0 Yes e No 0 Yes e No 0 Call Exhibit 13-8 Exhibit 13-8 Exhibit 13-10  Tree Influence Max Desirab Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-16, 13  13-16, 13  pacity 4800 4800 2000  ce Area le 4400:All     | 13-17) -18, or 13 -18, |

| General Inform                                                                                                                        | modfair                                                                     | ······································· | PS AND RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                              |                                                                                             |                                                                   |                                      | - V -                              |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|------------------------------------|
|                                                                                                                                       |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Infor                          |                                                                                              |                                                                                             |                                                                   |                                      |                                    |
| Analyst Agency or Company Date Performed                                                                                              |                                                                             | A<br>07/2013                            | - Jւ<br>Jւ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reeway/Dir of Tounction unisdiction |                                                                                              | RHVP 6NB Exiti<br>6NB Exiting Ran<br>Hamilton                                               |                                                                   |                                      | (d)                                |
| Analysis Time Period                                                                                                                  |                                                                             | Peak Hour                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nalysis Year                        |                                                                                              | 2013                                                                                        |                                                                   |                                      |                                    |
| Project Description                                                                                                                   | REdnill Safety                                                              | Study                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x 1 / 1                             |                                                                                              |                                                                                             |                                                                   |                                      |                                    |
| Inputs                                                                                                                                |                                                                             | L                                       | 2 (24 ) 2 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 (4 ) 4 |                                     |                                                                                              | <del></del>                                                                                 |                                                                   | <del></del>                          |                                    |
| Upstream Adj Ra                                                                                                                       | amp                                                                         | 1                                       | mber of Lanes, N<br>er of Lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                   |                                                                                              | *.<br>*                                                                                     |                                                                   | Downstrea<br>Ramp                    | am Adj                             |
| o Yes o                                                                                                                               | On .                                                                        | 1                                       | Lane Length, LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             |                                                                   | o Yes                                | o On                               |
| e No o                                                                                                                                | Off                                                                         | 1                                       | Lane Length L <sub>D</sub><br>ume, V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500<br>2779                         |                                                                                              |                                                                                             | rter                                                              | e No                                 | o Off                              |
| L <sub>up</sub> = ft                                                                                                                  |                                                                             |                                         | 5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 363                                 |                                                                                              |                                                                                             |                                                                   | L <sub>down</sub> =                  | ft                                 |
| -up                                                                                                                                   |                                                                             | Ramp Volum                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                                                              | 70                                                                                          |                                                                   | down                                 |                                    |
| $V_u = ve$                                                                                                                            | h/h                                                                         |                                         | e-Flow Speed, S <sub>FF</sub><br>Flow Speed, S <sub>FR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70.0                                |                                                                                              | i                                                                                           |                                                                   | V <sub>D</sub> = - =                 | veh/h                              |
| O                                                                                                                                     | //- 11                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             |                                                                   |                                      |                                    |
| Conversion to                                                                                                                         | pc/n Un                                                                     | der base                                | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                              |                                                                                             |                                                                   |                                      |                                    |
| (pc/h)                                                                                                                                | (Veh/hr)                                                                    | PHF.                                    | . Terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %Truck                              | %Rv                                                                                          | . f <sub>HV</sub>                                                                           | f <sub>p</sub>                                                    | v = V/PHF                            | x f <sub>HV</sub> x f <sub>I</sub> |
| Freeway                                                                                                                               | . 2779                                                                      | 0.94                                    | :: Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . : . 0                             | 0                                                                                            | 1.000                                                                                       | : =1.00 =                                                         | -:-:: 29                             | 56                                 |
| Ramp                                                                                                                                  | 363                                                                         | 0.94                                    | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                   | . 0                                                                                          | 1.000                                                                                       | 1.00                                                              | 38                                   | 36                                 |
| JpStream                                                                                                                              |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             |                                                                   |                                      |                                    |
| DownStream                                                                                                                            |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                            |                                                                                              |                                                                                             | Diverse Average                                                   |                                      |                                    |
| Totimotion of                                                                                                                         |                                                                             | Merge Areas                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Estimation                                                                                   |                                                                                             | Diverge Areas                                                     |                                      |                                    |
| stimation of                                                                                                                          |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | EStillatio                                                                                   |                                                                                             |                                                                   |                                      |                                    |
|                                                                                                                                       | $V_{12} = V_{F}$                                                            | (P <sub>FM</sub> )                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              | V <sub>12</sub> :                                                                           | $=V_R + (V_F - V_F)$                                              | R)PFD                                |                                    |
| EQ =                                                                                                                                  | (Equa                                                                       | ation 13-6 or                           | 13-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | L <sub>EQ</sub> =                                                                            | )                                                                                           | (Equation 13-1                                                    | 2 or 13-13                           | )                                  |
| <sub>FM</sub> =                                                                                                                       | using                                                                       | Equation (                              | Exhibit 13-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | P <sub>FD</sub> =                                                                            | 1                                                                                           | .000 using Equ                                                    | uation (Exhi                         | bit 13-7)                          |
| 12 =                                                                                                                                  | pc/h                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | V <sub>12</sub> =                                                                            | 2                                                                                           | 956 pc/h                                                          |                                      |                                    |
| or V <sub>av34</sub>                                                                                                                  | nc/h (                                                                      | Equation 13                             | I-14 or 13-17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | V <sub>3</sub> or V <sub>av34</sub>                                                          |                                                                                             | pc/h (Equation                                                    | n 13-14 or                           | 13-17)                             |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                         |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             | Yes e No                                                          |                                      | ,                                  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 *                                                                                         |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             | Yes a No                                                          |                                      | 4                                  |
| S. 15-557                                                                                                                             |                                                                             |                                         | I-16, 13-18, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              |                                                                                             | oc/h (Equation                                                    | 13-16, 13-                           | 18. or 13                          |
| Yes,V <sub>12a</sub> =                                                                                                                | 13-19)                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | If Yes,V <sub>12a</sub> =                                                                    |                                                                                             | 9)                                                                |                                      |                                    |
| Capacity Chec                                                                                                                         | cks                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Capacity                                                                                     | Checks                                                                                      |                                                                   |                                      |                                    |
|                                                                                                                                       | Actual                                                                      |                                         | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOS F?                              |                                                                                              | Actual                                                                                      | Ca                                                                | pacity                               | LOSF                               |
|                                                                                                                                       |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | V <sub>F</sub>                                                                               | 2956                                                                                        | Exhibit 13-8                                                      | 4800                                 | No                                 |
|                                                                                                                                       |                                                                             | Exhibit 13-8                            | *:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | $V_{FO} = V_{F}$                                                                             | V <sub>R</sub> 2570                                                                         | Exhibit 13-8                                                      | 4800                                 | No                                 |
| ·V                                                                                                                                    |                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                              | 386                                                                                         | Exhibit 13-10                                                     |                                      | No                                 |
| ·V <sub>FO</sub>                                                                                                                      |                                                                             | 1 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                   | V <sub>D</sub>                                                                               | 000                                                                                         |                                                                   |                                      | 1,000                              |
|                                                                                                                                       | Merge In                                                                    | ofluence A                              | rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                            | Flow Ent                                                                                     |                                                                                             |                                                                   | ce Area                              |                                    |
|                                                                                                                                       | Merge In                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Violation?                          |                                                                                              |                                                                                             | rge Influenc                                                      |                                      | Violation                          |
| Flow Entering                                                                                                                         |                                                                             | Max                                     | Area<br>Desirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Violation?                          | Flow Ent                                                                                     | ering Dive                                                                                  | rge Influenc                                                      |                                      | Violation<br>No                    |
| low Entering                                                                                                                          | Actual                                                                      | Max<br>Exhibit 13-8                     | Desirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Violation?                          | Flow Ent                                                                                     | ering Dive<br>Actual<br>2956                                                                | rge Influence<br>Max Desirab<br>Exhibit 13-8                      | le<br>4400:All                       | No                                 |
| low Entering  V <sub>R12</sub> evel of Service                                                                                        | Actual                                                                      | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Violation?                          | Flow Ent                                                                                     | ering Dive Actual 2956 Service De                                                           | rge Influence Max Desirab Exhibit 13-8                            | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| V <sub>R12</sub><br>evel of Service<br>D <sub>R</sub> = 5.475 + 0.0                                                                   | Actual                                                                      | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Flow Ent                                                                                     | ering Dive                                                                                  | rge Influence<br>Max Desirab<br>Exhibit 13-8                      | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| Flow Entering $V_{R12}$ evel of Servic $D_R = 5.475 + 0.0$ $R = (pc/mi/ln)$                                                           | Actual  Ce Determ  0734 v R +                                               | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | V <sub>12</sub> Level of 3 D <sub>R</sub> = 25.2                                             | Actual   2956     2956     2952     2 (pc/mi/ln)                                            | rge Influence Max Desirab Exhibit 13-8                            | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| Flow Entering $V_{R12}$ evel of Servio $D_R = 5.475 + 0.0$ $R = (pc/mi/ln)$ $DS = (Exhibit 13)$                                       | Actual  Ce Detern  0734 v <sub>R</sub> + (                                  | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | V <sub>12</sub> Level of S D <sub>R</sub> = 25.2 LOS = C (I                                  | Actual 2956 Service De R = 4.252 + 0 2 (pc/mi/ln) Exhibit 13-2)                             | Max Desirab<br>Exhibit 13-8<br>Etermination                       | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| Flow Entering $V_{R12}$ evel of Servion $D_R = 5.475 + 0.0$ $R = (pc/mi/ln)$                                                          | Actual  Ce Detern  0734 v <sub>R</sub> + (                                  | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | V <sub>12</sub> Level of S D <sub>R</sub> = 25.2 LOS = C (I                                  | Actual 2956 Service De R = 4.252 + 0 2 (pc/mi/ln) Exhibit 13-2)                             | Max Desirab Exhibit 13-8 Exermination .0086 V <sub>12</sub> - 0.0 | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| Flow Entering $V_{R12}$ Level of Servic $D_{R} = 5.475 + 0.0$ $R = (pc/mi/ln)$ $OS = (Exhibit 13)$ Speed Determ                       | Actual  ce Detern 0734 v R + 1  3-2)  ination                               | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | V <sub>12</sub> Level of 3  D <sub>R</sub> = 25.2 LOS = C (II Speed De D <sub>S</sub> = 0.46 | Actual 2956 Service De R = 4.252 + 0 2 (pc/mi/ln) Exhibit 13-2) etermination 33 (Exhibit 13 | max Desirab Exhibit 13-8 Etermination .0086 V <sub>12</sub> - 0.0 | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| V <sub>R12</sub> vevel of Servic D <sub>R</sub> = 5.475 + 0.0 R = (pc/mi/ln) DS = (Exhibit 13- Speed Determ S = (Exibit 13-           | Actual  Ge Detern  0734 v R + 1  3-2)  ination  -11)                        | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Flow Entropy $V_{12}$ Level of $S_R = 25.2$ LOS = C (IF Speed Description $S_R = 57.0$       | Actual 2956 Service De R = 4.252 + 0 2 (pc/mi/ln) Exhibit 13-2) Extermination 3 (Exhibit 13 | Max Desirab Exhibit 13-8 Exermination .0086 V <sub>12</sub> - 0.0 | le<br>4400:All<br><b>n (if not l</b> | No                                 |
| V <sub>R12</sub> evel of Servic  D <sub>R</sub> = 5.475 + 0.0  R = (pc/mi/ln)  OS = (Exhibit 13-13-13-13-13-13-13-13-13-13-13-13-13-1 | Actual  Ge Detern  0734 v <sub>R</sub> + (  3-2)  ination  -11)  bit 13-11) | Max<br>Exhibit 13-8<br>nination (       | Desirable  if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Flow Entropy $V_{12}$ Level of $S_R = 25.2$ LOS = C (IF Speed Description $S_R = 57.0$       | Actual 2956 Service De R = 4.252 + 0 2 (pc/mi/ln) Exhibit 13-2) etermination 33 (Exhibit 13 | Max Desirab Exhibit 13-8 Exermination .0086 V <sub>12</sub> - 0.0 | le<br>4400:All<br><b>n (if not l</b> |                                    |

HAM0064439\_0001 RHV0001045

| Conoral Info                                     |                         | IMI, O ALVE                  | RAMP JUN                      |               |                                      |        |                         |                             |                      |                               |
|--------------------------------------------------|-------------------------|------------------------------|-------------------------------|---------------|--------------------------------------|--------|-------------------------|-----------------------------|----------------------|-------------------------------|
| General Infor                                    | mation<br>HG            | 9 150 _ 44 1                 | ,                             | Site Info     |                                      | DUV    | /D GCD Ento             | ring Ramp                   |                      |                               |
| nalyst<br>gency or Company                       | CIM                     | 200                          |                               | lunction      | lavels                               | 4      |                         | ning Ramp                   | 4 10                 |                               |
| late Performed                                   |                         | 7/2013                       |                               | lurisdiction  |                                      |        | Entering illton         |                             |                      |                               |
| nalysis Time Period                              |                         | Peak Hour                    |                               | Analysis Year | (4) ×                                | 2013   |                         | * 3°                        |                      | 40 0                          |
| roject Description                               |                         |                              |                               | analysis real |                                      | 2010   |                         |                             | . 822 .              |                               |
| nputs                                            | rtourin curety          | ····                         | 7. 7                          |               |                                      |        | .,                      | 8 8 V V                     |                      |                               |
|                                                  |                         | Freeway Nur                  | mber of Lanes, N              | 2             | 7 77 .                               | -      |                         | 71.12                       | <u></u>              |                               |
| Ipstream Adj Ramp                                |                         |                              | er of Lanes, N                |               | 17 No. 2                             |        | 1, 3                    |                             | Downstr<br>Ramp      | eam Adj                       |
| Yes o On                                         |                         |                              | Lane Length, L                | 500           |                                      |        | 31 903. 7 - 7           |                             | ixamp                |                               |
|                                                  |                         | •                            |                               | 500           |                                      |        |                         |                             | o Yes                | o On                          |
| e No o Off                                       |                         | 1                            | Lane Length L <sub>D</sub>    | 0000          |                                      |        |                         |                             | e No                 | o Off                         |
|                                                  | * * * *                 | Freeway Vol                  | 9.3-                          | 2669          |                                      |        | * *                     |                             | 1 1 1                | ft .                          |
| <sub>up</sub> = ft                               |                         | Ramp Volum                   |                               | 321           | 5.                                   |        |                         |                             | Ldown =              | 10                            |
| 'u = veh/h                                       |                         |                              | e-Flow Speed, S <sub>FF</sub> | 70.0          |                                      |        |                         |                             | $V_D =$              | veh/h                         |
| u voimi                                          | - 1.                    | Ramp Free-F                  | low Speed, S <sub>FR</sub>    | 30.0          |                                      |        | m 184                   |                             |                      | a see a di                    |
| Conversion to                                    | pc/h Un                 | der Base                     | Conditions                    | a a g         |                                      | 2 (24) |                         |                             | 10.150 \$ 70.00      | # 174 OF # 92                 |
| (pc/h)                                           | (Veh/hr)                | PHF                          | Terrain                       | %Truck        | %Rv                                  |        | f <sub>HV</sub>         | f <sub>p</sub>              | v = V/PH             | $ F \times f_{HV} \times f_p$ |
| reeway                                           | 2669                    | 0.94                         | Level                         |               | - 0                                  |        | .1.000                  | 1.00                        |                      | 2839                          |
| Ramp                                             | 321                     | 0.94                         | Level                         | 0             | 0                                    |        | 1.000                   | 1.00                        |                      | 341                           |
| JpStream                                         |                         |                              |                               |               |                                      |        |                         |                             |                      |                               |
| OownStream -                                     | 11 24                   |                              | AN AL 3                       | 1             | -                                    | l      |                         | <u> </u>                    |                      |                               |
| stimation of                                     |                         | Merge Areas                  |                               |               | Estimat                              | tion   |                         | Diverge Areas               |                      |                               |
| Sumation of                                      |                         | `                            |                               |               | LSuma                                | 1011   |                         |                             |                      |                               |
|                                                  | $V_{12} = V_{F}$        | (P <sub>FM</sub> )           |                               |               |                                      |        | $V_{12} =$              | $V_R + (V_F - V_F)$         | R)P <sub>FD</sub>    |                               |
| EQ =                                             | (Equ                    | ation 13-6 o                 | r 13-7)                       |               | L <sub>EQ</sub> =                    |        |                         | (Equation 13                | 3-12 or 13-          | 13)                           |
| - <sub>M</sub> =                                 | 1.000                   | using Equa                   | tion (Exhibit 13-6            | )             | P <sub>FD</sub> =                    |        |                         | using Equat                 | ion (Exhibit 1       | 13-7)                         |
| 12 =                                             | 2839                    | pc/h                         |                               |               | V <sub>12</sub> =                    |        |                         | pc/h                        |                      |                               |
| or V <sub>av34</sub>                             | 0 pc/                   | n (Equation                  | 13-14 or 13-17                | )             | V <sub>3</sub> or V <sub>av34</sub>  |        |                         | pc/h (Equation              | 13-14 or 13-         | 17)                           |
| $V_3$ or $V_{av34} > 2,700$                      | pc/h? o Ye              | s e No                       |                               |               | Is V <sub>3</sub> or V <sub>av</sub> | 34 > 2 | ,700 pc/h?              | Yes o No                    | 0                    |                               |
| V <sub>3</sub> or V <sub>av34</sub> > 1.5 *      | V <sub>12</sub> /2 o Ye | s a No                       |                               |               | Is V <sub>3</sub> or V <sub>av</sub> | 34 > 1 | .5 * V <sub>12</sub> /2 | Yes o No                    | 0                    |                               |
| Yes,V <sub>12a</sub> =                           | pc/h                    | (Equation 1                  | 3-16, 13-18, or               |               | If Yes,V <sub>12a</sub> =            | • •    | ***                     | pc/h (Equati                |                      | 13-18, or                     |
|                                                  | 13-19)                  |                              |                               |               |                                      |        |                         | 3-19)                       |                      |                               |
| apacity Che                                      |                         | ·                            |                               | T             | Capacit                              | y CI   | _                       |                             |                      | T                             |
|                                                  | Actual                  |                              | Capacity                      | LOS F?        | <del> </del>                         |        | Actual                  |                             | apacity              | LOS F?                        |
|                                                  |                         |                              |                               |               | V <sub>F</sub>                       |        |                         | Exhibit 13                  |                      |                               |
| V <sub>FO</sub>                                  | 3180                    | Exhibit 13-8                 |                               | No            | $V_{FO} = V_{F}$                     | $-V_R$ |                         | Exhibit 13                  |                      |                               |
|                                                  |                         |                              |                               |               | V <sub>R</sub>                       |        |                         | Exhibit 1                   | 3-                   |                               |
|                                                  | 1/1                     | <u> </u>                     |                               | 1             |                                      | 4      | na Disa                 | 10                          | - Ava-               |                               |
| low Entering                                     |                         |                              | I <i>rea</i><br>Desirable     | Violation?    | FIOW En                              | iteri  | Actual                  | <b>rge Influe</b><br>Max De |                      | Violation?                    |
| 1/                                               | Actual                  | Exhibit 13-8                 |                               |               | V                                    | +      | Actual                  | Exhibit 13-8                | Silable              | Violations                    |
| V <sub>R12</sub>                                 | 3180                    |                              | 4600:All                      | No            | V <sub>12</sub>                      |        | D-                      |                             | ) /if u = /          | [                             |
| evel of Servi                                    |                         |                              |                               |               |                                      |        |                         | termination                 |                      | (F)                           |
| $D_R = 5.475 + 0$                                |                         | 1.0078 V <sub>12</sub> - 0.1 | 00627 L <sub>A</sub>          |               |                                      |        |                         | .0086 V <sub>12</sub> - 0   | 0.009 L <sub>D</sub> |                               |
| 27.0 (pc/mi/                                     | ln)                     |                              |                               |               |                                      | c/mi/  |                         |                             |                      |                               |
| OS = C (Exhibit 1                                | 3-2)                    |                              |                               |               | LOS = (E                             | Exhib  | it 13-2)                | (6)                         |                      |                               |
| peed Determ                                      | ination                 |                              |                               |               | Speed L                              | )ete   | rminatio                | on                          |                      | *                             |
| = 0.385 (Exib                                    | t 13-11)                |                              |                               |               | $D_s = (E$                           | xhibit | 13-12)                  |                             |                      |                               |
|                                                  | Exhibit 13-11)          |                              |                               |               |                                      | ph (Ex | khibit 13-12)           |                             |                      |                               |
|                                                  |                         |                              |                               |               |                                      |        | (hibit 13-12)           |                             |                      |                               |
| = N/Λ mnh /L                                     |                         |                              |                               |               | · ·                                  |        | -                       |                             |                      |                               |
| <ul><li>N/A mph (E</li><li>59.2 mph (E</li></ul> | Exhibit 13-13)          |                              |                               |               | S= m                                 | ph (Ex | (hibit 13-13)           |                             |                      |                               |

| Concesti                                      |                                              | INITO AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RAMP JUN                    |                        |                                     |                 |                          | 2177.55                                           | N. A                | 1/4 × 1/4                      |
|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|-------------------------------------|-----------------|--------------------------|---------------------------------------------------|---------------------|--------------------------------|
| General Info                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Site Infor             |                                     |                 |                          |                                                   |                     |                                |
| Analyst                                       | HG                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | reeway/Dir of T        | ravel                               |                 |                          | ng Ramp                                           | - 4,                | 5041                           |
| Agency or Company<br>Date Performed           |                                              | 07/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (g)                         | unction<br>urisdiction |                                     | Hamilt          | ntering                  | •                                                 | 9. 31               | ,                              |
| Analysis Time Perio                           |                                              | Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | nalysis Year           | * *                                 | 2013            | OH                       | W 00                                              | * ·                 |                                |
| Project Description                           |                                              | A STATE OF THE STA | <del></del>                 | indigolo i oui         | * yet                               | 2010            | 41 N.A                   |                                                   | <u> </u>            |                                |
| Inputs                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          | R.A. R. M.                                        | -                   |                                |
| Upstream Adj Ramp                             | ,                                            | Freeway Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | per of Lanes, N             | 2                      |                                     |                 |                          |                                                   | Downstre            | aam Adi                        |
| phaneain val Manit                            |                                              | Ramp Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Lanes, N                 | 1                      |                                     |                 |                          |                                                   | Ramp                | sain Auj                       |
| o Yes o O                                     | n                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ane Length, L               | 500                    |                                     |                 |                          |                                                   |                     | 0-                             |
|                                               |                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ane Length L                |                        |                                     |                 |                          |                                                   | o Yes               | <sub>0</sub> On                |
| e No o O                                      | Ť                                            | Freeway Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 4015                   |                                     |                 |                          |                                                   | е Мо                | o Off                          |
| <sub>-up</sub> = ft                           |                                              | Ramp Volume,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a * **                      | 316                    |                                     |                 | *                        |                                                   | L <sub>down</sub> = | ft                             |
| ир .                                          |                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flow Speed, S <sub>FF</sub> |                        |                                     |                 |                          |                                                   | l domin             |                                |
| $V_{ij} = veh/h$                              | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | . 1                                 |                 |                          | 2                                                 | $V_D =$             | veh/h                          |
| A HARA LINE AL                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w Speed, S <sub>FR</sub>    |                        | 19.39.3.                            |                 |                          |                                                   |                     |                                |
| Conversion t                                  | o pc/h Un                                    | der Base C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conditions                  |                        | T                                   | 7               | 0 / 1 / 1 · 1            | 1 1 pro-                                          | Tea and             |                                |
| (pc/h)                                        | (Veh/hr)                                     | PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terrain                     | %Truck                 | . %Rv                               |                 | f <sub>HV</sub>          | f <sub>p</sub>                                    | v = V/PH            | $F \times f_{HV} \times f_{p}$ |
| Freeway                                       | 4015                                         | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                       | 0                      | · · · · · O · · ·                   |                 | .000                     | 1.00                                              | 3 00000             | 4271                           |
| Ramp                                          | 316                                          | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                       | 0                      | 0                                   | _               | 000                      | 1.00                                              |                     | 336                            |
| UpStream                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          |                                                   |                     |                                |
| DownStream                                    | 1.31                                         | har e v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | ve also                |                                     |                 | 13.69                    |                                                   | ж в                 | 11 61                          |
|                                               |                                              | Merge Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                        |                                     |                 | Di                       | iverge Areas                                      |                     |                                |
| Estimation o                                  | V <sub>12</sub>                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                        | Estimat                             | ion o           | t v <sub>12</sub>        |                                                   |                     |                                |
|                                               | V <sub>12</sub> = V <sub>F</sub>             | (P <sub>FM</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                        |                                     |                 | V <sub>12</sub> = V      | / <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | P <sub>FD</sub>     |                                |
| -EQ =                                         | (Equ                                         | ation 13-6 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13-7)                       |                        | L <sub>EQ</sub> =                   |                 | (1                       | Equation 13-                                      | 12 or 13-           | 13)                            |
| P <sub>FM</sub> =                             | 1.000                                        | using Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on (Exhibit 13-6)           | )                      | P <sub>FD</sub> =                   |                 | u                        | sing Equation                                     | n (Exhibit 1        | 3-7)                           |
| / <sub>12</sub> =                             | 4271                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | è                      | V <sub>12</sub> =                   |                 |                          | c/h                                               | •                   | •                              |
| / <sub>3</sub> or V <sub>av34</sub>           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-14 or 13-17)              | 1                      | V <sub>3</sub> or V <sub>av34</sub> |                 | 3-14 or 13-              | 17)                                               |                     |                                |
| ls V <sub>3</sub> or V <sub>av34</sub> > 2,70 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ,                      |                                     | ., > 2.7        |                          | Yes o No                                          |                     |                                |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          | Yes o No                                          |                     |                                |
| 27 12/12/0                                    |                                              | (Equation 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16, 13-18, or               |                        |                                     |                 |                          | c/h (Equation                                     | n 13-16. 1          | 3-18, or                       |
| Yes,V <sub>12a</sub> =                        | 13-19)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | If Yes,V <sub>12a</sub> =           | =               |                          | -19) '                                            |                     |                                |
| Capacity Che                                  | cks                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | Capacit                             | y Che           | ecks                     |                                                   |                     |                                |
|                                               | Actual                                       | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pacity                      | LOS F?                 |                                     |                 | Actual                   |                                                   | pacity              | LOS F?                         |
|                                               |                                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                        | V <sub>F</sub>                      |                 |                          | Exhibit 13-8                                      | 3                   |                                |
| $V_{FO}$                                      | 4607                                         | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | No                     | $V_{FO} = V_{F}$                    | -V <sub>R</sub> |                          | Exhibit 13-8                                      | 3                   |                                |
| 10                                            |                                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | i                      | V <sub>R</sub>                      |                 |                          | Exhibit 13-                                       | -                   |                                |
|                                               |                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                        |                                     |                 |                          | 10                                                |                     |                                |
| low Entering                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 11111                  | Flow En                             |                 |                          | ge Influen                                        |                     |                                |
|                                               | Actual                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esirable                    | Violation?             | V/                                  | + A             | Actual                   | Max Desi                                          | rable               | Violation?                     |
| V <sub>R12</sub>                              | 4607                                         | Exhibit 13-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4600:All                    | Yes                    | V <sub>12</sub>                     |                 |                          | Exhibit 13-8                                      | <i>(1-</i>          | -                              |
| evel of Serv                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          | erminatio                                         |                     | F)                             |
| $D_R = 5.475 +$                               | $0.00734  \text{v}_{R} + 0$                  | 0.0078 V <sub>12</sub> - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0627 L <sub>A</sub>         |                        |                                     | 7.5             |                          | 0086 V <sub>12</sub> - 0.                         | 009 L <sub>D</sub>  |                                |
| R = 38.1 (pc/m                                | i/ln)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | $D_R = (p$                          | c/mi/lr         | 1)                       |                                                   |                     |                                |
| OS = E (Exhibit                               | 13-2)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | LOS = (E                            | Exhibit         | 13-2)                    |                                                   |                     |                                |
| peed Detern                                   | nination                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - The second second         |                        | Speed L                             | eterr           | ninatio                  | 7                                                 |                     |                                |
|                                               | oit 13-11)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | -                                   | xhibit 13       |                          |                                                   |                     |                                |
|                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 | bit 13-12)               |                                                   |                     |                                |
| -                                             | Lyhihit 12 111                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          |                                                   |                     |                                |
| = 50.9 mph (                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        |                                     |                 |                          |                                                   |                     |                                |
| R= 50.9 mph (<br>0= N/A mph (E                | Exhibit 13-11) Exhibit 13-11) Exhibit 13-13) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | S <sub>0</sub> = m                  | ph (Exhi        | bit 13-12)<br>bit 13-13) |                                                   |                     |                                |

#### APPENDIX C

I MINA I N A AN S





Figure 9-12 - Warrant for Lighting Interchanges

January 2006

9-20





Figure 9-12 - Warrant for Lighting Interchanges

January 2006





Figure 9-12 - Warrant for Lighting Interchanges

January 2006

APPENDIX D

enefit Cost Analysis In uts esults

#### Benefit-Cost Ratio Results

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | Te                             |        | Benefit (Nu | mber of Collisions) | Benefit (Monetary | y on              | *                 |                            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|--------------------------------|--------|-------------|---------------------|-------------------|-------------------|-------------------|----------------------------|-----------|
| Countermeasures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Road Element | Benefit             | Targeted Collisions            | Fatal  | Non-Fatal   | PDO                 | Value, 5-year)    | Service Life      | Total Benefit (S) | Cost (S)                   | B/C Ratio |
| Entire Study Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100          |                     | A COLUMN TO THE REAL PROPERTY. |        |             |                     |                   |                   |                   | AT LESS THE REAL PROPERTY. |           |
| PRPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 10,2                | All Collisions                 | 0.05   | 3.49        | 6.61                | \$245,593         | 5                 | \$245,592.84      | \$74,700                   | 3.29      |
| Wider Marking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 2.6                 | Fatal + Injury .               | 0.04   | 2.60        |                     | \$135,537         | 5                 | \$135,536.79      | \$40,000                   | 3.39      |
| Illumination (Freeway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 33.8                | Night Time                     | 0.18   | 11.65       | 22.02               | \$818,643         | 20                | \$3,274,571.23    | \$800,000                  | 4.09      |
| Illumination (Ramps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 14.7                | Night Time                     | 0.08   | 5.04        | 9.54                | \$354,513         | 20                | \$1,418,052.50    | \$2,750,000                | 0.52      |
| High Friction Pavement (Ramp 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 8.9                 | 'All Collisions                | 0.05   | 3.06        | 5.79                | \$215,212         | . 5               | \$215,212.20      | \$ 92,863                  | 2.32      |
| Illumination (Ramp 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                     |                                |        |             |                     |                   |                   |                   |                            |           |
| Single Road Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | STATE OF THE PARTY. |                                |        |             |                     |                   | The second second |                   |                            |           |
| The series and the series of t | Ramp #3      | 1.8                 | All Collisions                 | 0.01   | 0.63        | 1.18                | \$44,007          | 5                 | \$44,006.51       | 36. 1                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #5      | 0.6                 | - All Collisions               | 0.00   | 0.21        | 0.40                | \$14,966          | 5                 | \$14,965.56       |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #7a     | 1.2                 | All Collisions                 | 0.01   | 0.42        | 0.80                | \$29,661          | 5                 | \$29,660.57       | \$ 86,250                  | 0.34      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramps #7b    | 0.9                 | All Collisions                 | 0.00   | 0.31        | 0.58                | \$21,575          | 5                 | \$21,574.95       | \$ 57,500                  | 0.38      |
| High Friction Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ramp#6       | 8.9                 | All Collisions                 | 0.05   | 3.06        | 5.79                | \$215,212         | 5                 | \$215,212.20      | \$ 92,863                  | 2.32      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #8      | 1.4                 | All Collisions                 | 0.01   | 0.50        | 0.94                | \$35,049          | 5                 | \$35,049.45       |                            |           |
| U 2002 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Ramp #9    | 0.4                 | : All Collisions               | - 0.00 | 0.15        | 0.29                | \$10,617          | 5                 | \$10,616.82       | F 4                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #10     | 0.2                 | All Collisions                 | 0.00   | 0.08        | 0.15                | \$5,711           | 5                 | \$5,710.75        | - 0                        | - 100     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #3      | 0.0                 | Night Time                     | 0.00   | 0.00        | 0.00                | \$0               | 20                | \$0.00            |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #5      | 0.2                 | Night Time                     | 0.00   | 0.07        | 0.13                | \$4,989           | 20                | \$19,954.08       | \$ 275,000                 | 0.07      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #7a     | 0.7                 | Night Time                     | 0.00   | 0.23        | 0.44                | \$16,478          | 20                | \$65,912.38       | \$ 275,000                 | 0.24      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramps #7b    | 0.4                 | Night Time                     | 0.00   | 0.15        | 0.28                | \$10,274          | 20                | \$41,095.15       | \$ 275,000                 | 0.15      |
| Illumination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ramp #6      | 10.8                | Night Time                     | 0.06   | 3.70        | 6.99                | \$260,048         | 20                | \$1,040,192.29    | \$ 275,000                 | 3.78      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #8      | 2.4                 | Night Time                     | 0.01   | 0.83        | 1.57                | \$58,416          | 20<br>20          | \$233,662.98      | \$ 275,000                 | 0.85      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #9      | 0.2                 | Night Time                     | 0.00   | 0.06        | 0.12                | \$4,424           | 20                | \$17,694.69       |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp #10     | 0.0                 | Night Time                     | 0.00   | 0.00        | 0.00                | \$0               | 20                | \$0.00            |                            |           |

#### Inputs

| Description      | Fatal injury | Non fatal injury | PD only | Total  |
|------------------|--------------|------------------|---------|--------|
| # of Collisions  | 1            | - 64             | - 121   | 186    |
| Proportion (All) | 1%           | 34%              | 65%     | 100%   |
| Proportion (FI)  | 2%           | - 98%            |         | 100% - |

|                       | C-Fatal     | C-Injury | C-PDO   |  |  |  |
|-----------------------|-------------|----------|---------|--|--|--|
| Societal Costs (1990) | \$831,429   | \$20,084 | \$6,136 |  |  |  |
| Societal Costs (2013) | \$1,308,127 | \$31,599 | \$9,654 |  |  |  |
| EPDO ·                | 135.5       | 3,3      | 1.0 -   |  |  |  |

http://www.bankofcanada.ca/en/rates/inflation\_calc.html Average annual inflation rate: 1.99% for 1990-20

Number of years 23
Companied interest FV = PV\*(1+i)An

Present Value 1
Future Value 1.573347343

| Countermeasures                  | Unit Cost                           | Sq.m.   | Cost            |
|----------------------------------|-------------------------------------|---------|-----------------|
| PRPM                             | \$ 30,000.00 mile (both directions) | 2.5     | \$ 74,700       |
| Wider Marking                    | \$ 5.00 per metre                   | 8000    | \$ 40,000.00    |
| Illumination (Freeway)           | \$ 100,000.00 per kilometre         | 8.0     | \$ 800,000.00   |
| Illumination (Ramp)              | \$ 275,000.00 per ramp              | 10      | \$ 2,750,000.00 |
| High Friction Pavement (Ramp 6)  | \$ 50.00 sq m                       | 1857.25 | \$ 92,862.50    |
| High Friction Pavement (Ramp 7a) | \$ 50,00 sq m                       | 1725    | \$ 86,250.00    |
| High Friction Pavement (Ramp 7b) | \$ 50.00 sq m                       | 1150    | \$ 57,500.00    |

# Hamilton

#### 7-Day Forecast for the City of Hamilton

Amec Foster Wheeler Forecast for Hamilton - North Zone

Issued At: Valid Until: Saturday 24 October 2015 0600 EDT Friday 30 October 2015 0800 EDT



Warning:

NONE

Cloudy with showers developing this morning, becoming periods of rain with a risk of thunderstorms in the evening as cold front sweeps across the region. Showers end early Sunday morning followed by clearing skies through the day, as weak high pressure builds in.

|  | re |  |  |
|--|----|--|--|
|  |    |  |  |

| -Olecast             |       |       |         |          |               |          |          | The state of the s |       |       |         |          |          |          |          | -      |       |
|----------------------|-------|-------|---------|----------|---------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------|----------|----------|----------|----------|--------|-------|
| Date                 | WEX   | Aline | Sat Oc  | tober    | 24 201        | 5        | 7000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | Sui   | Octo    | per 25 2 | 2015     |          |          | Mo     | n 26  |
| Period               |       | Mor   | ning    | After    | rnoon Evening |          | Over     | night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Moi   | rning | After   | noon     | Eve      | ning     | Ove      | rnight |       |
| Hour Ending (EDT)    | 3 4 5 | 6 7 8 | 9 10 11 | 12 13 14 | 15 16 17      | 18 19 20 | 21 22 23 | 0 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 4 5 | 6 7 8 | 9 10 11 | 12 13 14 | 15 16 17 | 18 19 20 | 21 22 23 | 0 1 2  | 3 4 5 |
| Rain                 |       |       |         |          |               |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         |          |          |          |          |        |       |
| Showers              |       |       |         |          |               |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | 10 2    |          |          |          |          |        |       |
| Liquid Rate (mm/3h)  | 0     | 0     | 1 .     | <1       | <1            | . 3      | 4        | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1    | 0     | 0       | 0        | 0        | .0       | 0        | 0      | 0     |
| Freez. Rate (mm/3h)  | 0     | 0     | 0       | 0        | 0             | 0        | 0.       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 0     | 0       | 0        | 0.       | 0        | 0        | 0      | 0     |
| Snow Rate (cm/3h)    | 0     | 0     | . 0     | 0        | 0             | 0        | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | - 0   | 0       | 0        | 0 -      | 0        | 0        | 0      | 0     |
| Liquid Accum. (mm)   | 0     | 0.    | 1       | 1        | 2             | - 4-     | 8        | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 9   | 9     | 9 -     | 9        | - 9      | - 9      | 9        | 9      | 9     |
| Freez. Accum. (mm)   | . 0   | 0     | 0       | 0        | 0             | - 0      | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 0     | 0 -     | . 0      | - 0      | -0       | 0 -      | - 0    | 0-    |
| Snow Accum. (cm)     | 0     | 0     | 0       | 0        | 0             | 0        | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 0     | 0       | 0        | 0        | 0        | 0        | 0      | 0     |
| Time (EDT)           | 05    | 08    | 11      | 14       | 17            | 20       | 23       | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05    | 08    | 11      | 14       | 17       | 20       | 23       | 02     | 05    |
| Temperature (C)      | 6     | 7     | 12      | 15       | 15            | 15       | 14       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8     | 7     | 10      | 12       | 10       | 5        | 3        | 3      | 3     |
| Dew Point Temp (C)   | 3     | 4     | 6       | 12       | 14            | 14       | 13       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6     | - 5   | 5       | 4        | 2        | 1        | 2        | 1      | 1     |
| Humidity (%)         | 83    | 76    | 68      | 82       | 94            | 94       | 94       | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87    | 87    | 71      | 58       | 57       | 75       | 93       | 87     | 87    |
| Wind Chill           |       | -     | -       | ALC: N   | -             | -        | - 1      | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 52  | -     | 1.5     | -        | -        | -        | 1        | 2      | 2     |
| Cloud Cover (%)      | 90    | 90    | 100     | 100      | 100           | 100      | 100      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100   | 80    | 0       | 0        | 0        | 0        | .0       | 0      | 0     |
| Visibility (km)      | 15    | 15    | 15      | 15       | 5             | 5        | 5        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11    | 11    | 15      | 15       | 15       | 15       | 9        | 12     | 13    |
| Wind Dir (true/from) | ESE   | ESE   | S       | S        | SSW           | SSW      | WSW      | WNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NW    | NW    | NNW     | NNW      | NW       | NNW      | NW       | NW     | NNW   |
| Wind Speed (km/h)    | 9     | 13    | 18      | 24       | 29            | 36       | 31       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26    | 24    | 23      | 22       | 21       | 13       | 9        | 5      | 5     |
| Gust Speed (km/h)    | 15    | 22    | 30      | 40       | 48            | 59       | 51       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43    | 40    | 38      | 37       | 35       | 22       | 15       | 9      | 9     |

| Outlook                                |          |         |         |      |          |          |          |          | - E - 4             |          |          |          | diameter. |                   |          |          |          |
|----------------------------------------|----------|---------|---------|------|----------|----------|----------|----------|---------------------|----------|----------|----------|-----------|-------------------|----------|----------|----------|
| Date                                   | Me       | on Oct  | 26      | Tue  | Octob    | er 27 2  | 2015     | Wed      | Wed October 28 2015 |          |          |          | Octob     | Fri 30            |          |          |          |
| Time (EDT)                             | 8        | 14      | 20      | 2    | 8        | 14       | 20       | 2        | 8                   | 14       | 20       | 2        | 8         | 14                | 20       | 2        | 8        |
| Rain<br>Showers                        |          |         |         |      |          |          |          |          |                     |          |          |          |           |                   |          |          |          |
| Temperature (C)                        | 2        | 11      | 5       | 3    | 3        | 10       | 7        | 7        | . 8                 | 15       | 16       | 13       | 11        | 9                 | 7        | 6        | 6        |
| Cloud Cover (%)                        | 0        | 0       | 0       | 0    | 10 .     | 20       | 60       | 80       | 100                 | 100      | 100      | 100      | 40        | 80                | 20       | 80       | 60       |
| Wind Dir (true/from)                   | NE       | E       | N       | N    | NNE      | E        | E        | ESE      | ESE                 | ESE      | ESE      | SW       | SW        | - William Control | WSW      |          | W        |
| Wind Speed (km/h)<br>Gust Speed (km/h) | 10<br>17 | 8<br>14 | 7<br>12 | 9 16 | 16<br>27 | 24<br>40 | 26<br>43 | 21<br>36 | 21<br>36            | 28<br>46 | 25<br>41 | 29<br>47 | 31<br>51  | 39<br>62          | 28<br>46 | 32<br>52 | 29<br>48 |

Duty Forecaster:

1-800-968-2044 or weather@amecfw.com



#### 7-Day Forecast for the City of Hamilton

Amec Foster Wheeler Forecast for Hamilton - North Zone

Issued At: Valid Until: Saturday 24 October 2015 0600 EDT Friday 30 October 2015 0800 EDT









Duty Forecaster:

1-800-968-2044 or weather@amecfw.com



#### 7-Day Forecast for the City of Hamilton

Amec Foster Wheeler Forecast for Hamilton - North Zone

Issued At: Valid Until: Saturday 24 October 2015 1400 EDT Friday 30 October 2015 2000 EDT



Warning:

NONE

Cloudy with showers, becoming periods of rain with a risk of thunderstorms in the evening as cold front sweeps across the region. Showers end early Sunday morning followed by clearing skies through the day as weak high pressure builds in. Partial clearing Monday with a chance of showers late day under a weak ridge.

| Forecast                                     |          |          |          |          |       |         |       |         |          |          |          |          |       |       |        |         |          |
|----------------------------------------------|----------|----------|----------|----------|-------|---------|-------|---------|----------|----------|----------|----------|-------|-------|--------|---------|----------|
| Date                                         | Sat      | Octob    | er 24 :  | 2015     |       |         | Sur   | Octob   | oer 25   | 2015     |          |          |       | Mon O | ctober | 26 201  | 5        |
| Period                                       | After    | noon     | Eve      | ning     | Over  | rnight  | Mor   | ning    | Afte     | rnoon    | Eve      | ning     | Over  | night | Mor    | ning    |          |
| Hour Ending (EDT)                            | 12 13 14 | 15 16 17 | 18 19 20 | 21 22 23 | 0 1 2 | 3 4 5   | 6 7 8 | 9 10 11 | 12 13 14 | 15 16 17 | 18 19 20 | 21 22 23 | 0 1 2 | 3 4 5 | 6 7 8  | 9 10 11 | 12 13 14 |
| Rain<br>Showers<br>Drizzle<br>Thundershowers |          |          |          |          |       |         |       |         |          |          |          |          |       |       |        |         |          |
| Liquid Rate (mm/3h)                          | 1        | <1       | 5 .      | . 11     | <1    | <1      | < 1   | <1      | 0        | 0        | 0        | 0        | 0     | 0     | 0      | 0       | 0        |
| Freez. Rate (mm/3h)                          | 0        | 0        | 0        | 0        | 0     | 0       | 0     | 0       | 0        | 0        | 0        | 0        | 0     | 0     | 0      | 0       | 0        |
| Snow Rate (cm/3h)                            | 0        | 0        | 0        | 0        | 0     | 0       | 0     | 0       | 0        | 0        | 0        | 0        | 0     | 0     | 0      | 0       | 0        |
| Liquid Accum. (mm)                           | 1        | 2        | 7        | 18       | 19    | 19      | 19    | 19      | 19       | 19       | 19       | 19       | 19    | 19    | 19     | 19      | 19       |
| Freez. Accum. (mm)                           | 0        | 0        | 0 .      | . 0      | 0     | 0       | . 0   | 0       | 0        | 0        | 0        | . 0      | 0     | 0     | .0 .   | 0       | 0        |
| Snow Accum. (cm)                             | 0        | 0        | 0        | 0        | 0     | 0       | 0     | 0       | 0        | 0        | 0        | 0        | 0     | 0     | 0      | 0       | 0        |
| Time (EDT)                                   | 14       | 17       | 20       | 23       | 02    | 05      | 08    | 11      | 14       | 17       | 20       | 23       | 02    | 05    | 08     | 11      | 14       |
| Temperature (C)                              | 10       | 13       | 15       | 14       | 10    | 8       | 7     | 9       | 11       | 10       | 5        | 4        | 2     | 0     | -1     | 8       | 10       |
| Dew Point Temp (C)                           | 9        | 13       | 14       | 13       | 9     | 6       | 5     | 5       | 3        | 2        | 2        | 2        | -1    | -3    | -4     | 4       | 5        |
| Humidity (%)                                 | 94       | 100      | 94       | 94       | 93    | 87      | 87    | 76      | 58       | 57       | 81       | 87       | 81    | 80    | 80     | 76      | 71       |
| Wind Chill                                   |          |          |          | -        |       | N. Tana | -     | -       | -        | -        | -        | 2        | 1     | -2    | -3     | -       | 1        |
| Cloud Cover (%)                              | 100      | 100      | 100      | 100      | 100   | 100     | 90    | 90      | 40       | 40       | 50       | 20       | 60    | 40    | 70     | 60      | 80       |
| Visibility (km)                              | 5        | 2        | 3        | 6        | 5     | 11      | 11    | 12      | 15       | 15       | 15       | 9        | 15    | 15    | 15     | 15      | 15       |
| Wind Dir (true/from)                         | S        | S        | SSW      | WSW      | WNW   | WNW     | NW    | NW      | NW       | NW       | NNW      | NNW      | NNW   | NE    | NE     | E.      | SSW      |
| Wind Speed (km/h)                            | 21       | 24       | 32       | 28       | 27    | 26      | 23    | 22      | 23       | 22       | 11       | 8.       | 5     | 6     | 5      | 7       | 7        |

| Outlook              |    |     |                     | _   |     |                         |         |     |     | *                   |    |     |    |                     |    |    |    |  |
|----------------------|----|-----|---------------------|-----|-----|-------------------------|---------|-----|-----|---------------------|----|-----|----|---------------------|----|----|----|--|
| Date                 | 26 | Tue | Tue October 27 2015 |     |     | Wed October 28 2015 Thu |         |     |     | Thu October 29 2015 |    |     |    | Fri October 30 2015 |    |    |    |  |
| Time (EDT)           | 20 | 2   | 8                   | 14  | 20  | 2                       | 8       | 14  | 20  | 2                   | 8  | 14  | 20 | 2                   | 8  | 14 | 20 |  |
| Rain<br>Showers      | ,  |     |                     |     |     |                         | / 11-10 |     | 1 M |                     |    |     |    |                     |    |    |    |  |
| Temperature (C)      | 7  | 4   | 4                   | 11  | 9   | 8                       | 11      | 15  | 16  | 14                  | 8  | 6   | 6  | 6                   | 6  | 9  | 4  |  |
| Cloud Cover (%)      | 40 | 60  | 60                  | 60  | 80  | 100                     | 100     | 100 | 100 | 100                 | 70 | 50  | 80 | 80                  | 60 | 0  | 0  |  |
| Wind Dir (true/from) | NE | ENE | NE                  | ESE | ESE | SE                      | SSE     | S   | SW  |                     |    | WSW |    | W                   | W  | NW | NW |  |
| Wind Speed (km/h)    | 8  | 5   | 9                   | 24  | 25  | 25                      | 27      | 38  | 26  | 31                  | 41 | 50  | 38 | 32                  | 29 | 25 | 24 |  |
| Gust Speed (km/h)    | 14 | 9   | 15                  | 40  | 41  | 41                      | 45      | 62  | 44  | 52                  | 67 | 79  | 62 | 52                  | 48 | 42 | 40 |  |

Duty Forecaster:

Gust Speed (km/h)

1-800-968-2044 or weather@amecfw.com



#### 7-Day Forecast for the City of Hamilton

Amec Foster Wheeler Forecast for Hamilton - North Zone

Issued At: Valid Until: Saturday 24 October 2015 1400 EDT Friday 30 October 2015 2000 EDT









**Duty Forecaster:** 

1-800-968-2044 or weather@amecfw.com



# Government of Canada

# Gouvernement du Canada

Home

TC ID:

Environment and natural resources

Weather, Climate and Hazard

Past weather and climate

Historical Data

## Notices

## Daily Data Report for October 2015

#### HAMILTON RBG CS ONTARIO

 Latitude:
 43°17'30.000" N

 Longitude:
 79°54'30.000" W

 Elevation:
 102.00 m

 Climate ID:
 6153301

 WMO ID:
 71297

XHM

| DAY                | Max<br>Temp<br>°C | Min<br>Temp<br>°C | Mean<br>Temp<br>°C | <u>Heat</u><br><u>Deg</u><br><u>Days</u> | Cool<br>Deg<br>Days | Total<br>Rain<br>mm | Total<br>Snow<br>cm | <u>Total</u><br><u>Precip</u><br>mm | Snow<br>on Grnd<br>cm                   | Dir of Max Gust 10's deg | Spd of<br>Max<br>Gust<br>km/h |
|--------------------|-------------------|-------------------|--------------------|------------------------------------------|---------------------|---------------------|---------------------|-------------------------------------|-----------------------------------------|--------------------------|-------------------------------|
| <u>01</u> <u>†</u> | 14.2              | 6.0               | 10.1               | 7.9                                      | 0.0                 | <u>M</u>            | <u>M</u>            | 0.0                                 |                                         | 5                        | 41                            |
| <u>02</u> ‡        | 12.8              | 6.6               | , 9.7              | 8.3                                      | 0.0                 | <u>M</u>            | <u>M</u>            | 0.0                                 |                                         | 7                        | 52                            |
| <u>03</u> †        | 11.7 <u>E</u>     | 10.1 <u>E</u>     | 10.9 <u>E</u>      | 7.1 <u>E</u>                             | 0.0 <u>E</u>        | <u>M</u>            | <u>M</u>            | <u>M</u>                            |                                         | 9                        | 56                            |
| <u>04</u>          | . 14.6            | 10.1              | 12.4               | 5.6                                      | 0.0                 | <u>M</u>            | <u>M</u>            | 0.0                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                          | <31                           |
| <u>05</u> †        | 14.5              | 9.8               | 12.2               | 5.8                                      | 0.0                 | M                   | <u>M</u>            | 0.2                                 |                                         |                          | <31                           |
| <u>06</u> †        | 17.4              | 9.7               | 13.6               | 4.4                                      | 0.0                 | M                   | <u>M</u>            | 0.2                                 |                                         |                          | <31                           |
| <u>07</u> †        | 22.6              | 7.4               | 15.0               | 3.0                                      | 0.0                 | M                   | M                   | 0.2                                 |                                         | arean et ar              | <31                           |

| * ***              | Owner Co. Com. No. |               |               | G 1            |             | £0 × :-:      |            | ** **    |                  | G 76 76     |             |
|--------------------|--------------------|---------------|---------------|----------------|-------------|---------------|------------|----------|------------------|-------------|-------------|
|                    |                    |               |               |                |             |               |            |          |                  | Dir of      |             |
|                    |                    |               |               | <u>Heat</u>    | Cool        |               |            |          |                  | Max         | Spd of      |
|                    | Max                | Min<br>—      | <u>Mean</u>   | <u>Deg</u>     | Deg         | Total         | Total      | Total    | Snow             | Gust        | Max         |
|                    | Temp               | Temp          | Temp          | <u>Days</u>    | <u>Days</u> | Rain          | Snow       | Precip   | on Grnd          | 10's        | <u>Gust</u> |
|                    | °C                 | °C            | °C            |                |             | mm            | cm         | mm       | cm               | deg         | km/h        |
|                    |                    | * 1 222       |               |                |             | 10 M July 2   |            |          | 24 10.           |             |             |
| <u>08</u> <u>†</u> | 16.0               | 4.6           | 10.3          | 7.7            | 0.0         | <u>M</u>      | <u>M</u>   | 5.0      |                  |             | <31         |
| <u>09</u> <u>†</u> | 17.2               | 5.9           | 11.6          | 6.4            | 0.0         | <u>M</u>      | <u>M</u>   | 1.2      |                  | 32          | 37          |
| <u>10 †</u>        | 17.5               | 4.6           | 11.1          | 6.9            | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  |             | <31         |
| <u>11</u> †        | 22.7               | 10.3          | 16.5          | 1.5            | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  | 25          | 39          |
| <u>12 †</u>        | 23.0               | 13.8          | 18.4          | 0.0            | 0.4         | <u>M</u>      | <u>M</u>   | 0.0      |                  | 20          | 33          |
| <u>13</u> ‡        | 19.1               | 11.5          | 15.3          | 2.7            | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  | 29          | 43          |
| <u>14</u> †        | 14.2               | 3.4           | 8.8           | 9.2            | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  |             | <31         |
| <u>15</u> †        | 19.6               | 5.0           | 12.3          | 5.7            | 0.0         | <u>M</u>      | <u>M</u>   | 5.8      |                  | 26          | 48          |
| <u>16</u> †        | 14.6               | 1.6           | 8.1           | 9.9            | 0.0         | <u>M</u>      | <u>M</u>   | 1.4      |                  | . 27        | 52          |
| <u>17</u> ±        | 8.9                | -1.3          | 3.8           | 14.2           | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  |             | <31         |
| <u>18 †</u>        | 9.3                | -2.6          | 3.4           | 14.6           | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      |                  |             | <31         |
| <u>19</u> †        |                    | -3.4          | 6.6           | 11.4           | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      | TOTAL CHARGE     | 21          | 41          |
| <u>20</u> ±        | 19.7               | 11.5          | 15.6          | 2.4            | 0.0         | <u>M</u>      | <u>M</u>   | 1.6      |                  | 27          | 41          |
| <u>21</u> †        | 17.9               | 10.4          | 14.2          | 3.8            | 0.0         | <u>M</u>      | <u>M</u>   | 0.8      |                  |             | <31         |
| <u>22</u> ±        | <u>M</u>           | 10.4 <u>E</u> | <u>M</u>      | <u>M</u>       | <u>M</u>    | <u>M</u>      | <u>M</u>   | <u>M</u> | ***              | 31          | 32          |
| <u>23</u> †        | 9.2                | 1.7           | 5.5           | 12.5           | 0.0         | M             | <u>M</u>   | 0.0      |                  |             | <31         |
| <u>24</u> †        | 17.9               | 7.3           | 12.6          | 5.4            | 0.0         | <u>M</u>      | <u>M</u>   | 13.4     |                  | 20          | 39          |
| <u>25</u> †        | 14.8               | 2.1           | 8.5           | 9.5            | 0.0         | M             | <u>M</u>   | 0.0      |                  | 30          | 37          |
| <u>26</u> †        | 11.5               | 1.0           | 6.3           | 11.7           | 0.0         | <u>M</u>      | <u>M</u>   | 0.0      | 5000 a (1.0.0 Me | *1.71 20 *1 | <31         |
| <u>27</u> ±        | 10.8               | 1.5           | 6.2           | 11.8           | 0.0         | M             | M          | 0.0      | 40               | 6           | 33          |
| <u>28</u> †        | 16.7               | 8.9           | 12.8          | 5.2            | 0.0         | <u>M</u>      | M          | 45.8     |                  | 5           | 33          |
| <u>29</u> †        | 14.3               | 6.4           | 10.4          | 7.6            | 0.0         | <u>M</u>      | <u>M</u>   | 0.8      | ** * * **        | 23          | 61.         |
| <u>30</u> †        | 11.2               | -1.2          | 5.0           | 13.0           | 0.0         | <u>M</u>      | . <u>M</u> | 0.0      | 1 0 1            |             | <31         |
| <u>31</u> †        | 11.3               | -1.7          | 4.8           | 13.2           | 0.0         | <u>M</u>      | <u>M</u>   | 2.2      |                  |             | <31         |
| Sum                |                    |               |               | 228.4 <u>^</u> | 0.4^        | <u>M</u>      | <u>M</u>   | 78.6^    |                  |             |             |
| Avg                | 15.4 <u>^</u>      | 5.5           | 10.4 <u>^</u> |                | W. 1227     |               |            |          |                  |             |             |
| Xtrm               | 23.0^              | -3.4          | to ment       |                |             | al grandfill. |            |          |                  | 23          | 61          |

Summary, average and extreme values are based on the data above.

## Legend

- A = Accumulated
- C = Precipitation occurred, amount uncertain
- E = Estimated
- F = Accumulated and estimated
- · L = Precipitation may or may not have occurred
- M = Missing

- N = Temperature missing but known to be > 0
- S = More than one occurrence
- T = Trace
- Y = Temperature missing but known to be < 0
- [empty] = No data available
- ^ = The value displayed is based on incomplete data
- † = Data for this day has undergone only basic quality checking
- ‡ = Partner data that is not subject to review by the National Climate Archives

Date modified:

2018-01-11



# of Canada

## Government Gouvernement du Canada

Environment and natural resources

Weather, Climate and Hazard Past weather and climate Historical Data

| - | D. II |     | 4 " | _ |          | _   |
|---|-------|-----|-----|---|----------|-----|
|   | IP II |     | 771 |   |          | C   |
|   | N     | Q J | 1.1 |   | <b>C</b> | . 7 |

## Hourly Data Report for October 24, 2015

All times are specified in Local Standard Time (LST). Add 1 hour to adjust for Daylight Saving Time where and when it is

#### HAMILTON RBG CS **ONTARIO**

| <u>Latitude</u> : | 43°17'30.000" N |
|-------------------|-----------------|
| Longitude:        | 79°54'30.000" W |
| Elevation:        | 102.00 m        |
| Climate ID:       | 6153301         |
| WMO ID:           | 71297           |
| TC ID:            | XHM             |

|       | Temp<br>°C | Dew Point<br>Temp<br>°C | Rel<br>Hum<br>% | <u>Wind</u><br><u>Dir</u><br>10's<br>deg | Wind<br>Spd<br>km/h | <u>Visibility</u><br>km | Stn<br>Press<br>kPa | <u>Hmdx</u>         | Wind<br>Chill  | Weather      |
|-------|------------|-------------------------|-----------------|------------------------------------------|---------------------|-------------------------|---------------------|---------------------|----------------|--------------|
| TIME  | *          | . F                     | 2               | v                                        |                     |                         |                     | F1 2 1 70 1         | 5. 5043        | hear of some |
| 00:00 | 8.0        | 3.8                     | 74              | 8                                        | 8                   |                         | 101.04              | and the contraction | # ## F         | <u>NA</u>    |
| 01:00 | 8.0        | 3.1                     | 71              | 6                                        | . 6                 |                         | 100.95              |                     |                | <u>NA</u>    |
| 02:00 | 7.8        | 2.7                     | 70              | 7                                        | 7                   |                         | 100.86              |                     |                | - <u>NA</u>  |
| 03:00 | 7.6        | 2.9                     | 72              | 5                                        | 6                   |                         | 100.80              |                     | ************** | <u>NA</u>    |
| 04:00 | 7.6        | 3.3                     | 74              | 3                                        | 2                   | See See C               | 100.77              | 2 200 EC 16         | 1 m 1 m 1 m    | NA           |

|   |       |            |                         |                 |                                          |                     | 5 111                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|---|-------|------------|-------------------------|-----------------|------------------------------------------|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   |       | Temp<br>°C | Dew Point<br>Temp<br>°C | Rel<br>Hum<br>% | <u>Wind</u><br><u>Dir</u><br>10's<br>deg | Wind<br>Spd<br>km/h | Visibility Press<br>km kPa | Hmdx Chil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|   | 05:00 | 7.6        | 3.7                     | 77              | 4                                        | 5                   | 100.68                     | 96 6 3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>NA</u> |
| - | 06:00 | 8.0        | 4.0                     | 76              | 5                                        | 4                   | 100.64                     | 1 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA        |
|   | 07:00 | 8.2        | 4.2                     | 76              | 5                                        | 4                   | 100.58                     | e a service a seguir o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA        |
|   | 08:00 | 8.8        | 4.7                     | 76              | 4                                        | 1                   | 100.53                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA        |
|   | 09:00 | 9.1        | 6.6                     | 84              | 21                                       | 1                   | 100.49                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 10:00 | 9.7        | 6.5                     | 80              | 3                                        | 2                   | 100.45                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA        |
|   | 11:00 | 10.5       | 7.1                     | 80              | 5                                        | 3                   | 100.36                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 12:00 | 10.8       | 7.9                     | 82              | 9                                        | 2                   | 100.30                     | tore to be received an amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>NA</u> |
|   | 13:00 | 10.1       | 8.6                     | 91              | 6                                        | 7                   | 100.15                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA        |
|   | 14:00 | 10.9       | 9.4                     | 91              | 4                                        | 3                   | 100.05                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 15:00 | 12.0       | 10.8                    | 93              | 0                                        | 1                   | 99.97                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 16:00 | 13.0       | 11.7                    | 92              | 5                                        | 3                   | 99.85                      | 2 20 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>NA</u> |
|   | 17:00 | 13.3       | 12.0                    | 92              | 4                                        | 3                   | 99.72                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 18:00 | 16.1       | 14.0                    | 87              | 23                                       | 7                   | 99.68                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 19:00 | 17.4       | 14.2                    | 81              | 22                                       | 11                  | 99.56                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA        |
|   | 20:00 | 17.8       | 14.6                    | 82              | 21                                       | 9                   | 99.49                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA        |
|   | 21:00 | 17.0       | 15.5                    | 91              | 21                                       | 12                  | 99.46                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA        |
|   | 22:00 | 16.9       | 15.0                    | 88              | 27                                       | 12                  | 99.56                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>NA</u> |
|   | 23:00 | 15.9       | 14.2                    | 90              | 23                                       | 6                   | 99.57                      | THE RESERVE THE RE | <u>NA</u> |
|   |       |            |                         |                 |                                          |                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

## Legend

- E = Estimated
- M = Missing
- NA = Not Available
- ‡ = Partner data that is not subject to review by the National Climate Archives

Date modified:

2018-01-11

























































CITY OF HAMILTON et. al. Defendant

Court File No.: 17-61728

**ONTARIO** 

SUPERIOR COURT OF JUSTICE

Proceeding commenced at HAMILTON

#### **AFFIDAVIT OF DOCUMENTS**

#### CITY OF HAMILTON

Legal Services Division 21 King Street West, 12<sup>th</sup> Floor Hamilton, Ontario L8P 4W7

### **DANA-ELISABETA LEZAU**

LSUC No.: 52306D

Tel: (905) 546-2424 Ext. 4216

Fax: (905) 546-4370

Lawyers for the Defendant, City of Hamilton

This is **Exhibit "E**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

Court File No.: 17-61728

## ONTARIO SUPERIOR COURT OF JUSTICE

BETWEEN:

#### SHANNON HANSEN and HEATHER HANSEN

**Plaintiffs** 

- and -

#### MARK BERNAT and CITY OF HAMILTON

Defendants

## VOLUME II AFFIDAVIT OF DOCUMENTS

I, Marco Oddi, of the City of Hamilton, in the Province of Ontario, MAKE OATH AND SAY:

- 1. I am a Manager in the Engineering Services Division of the Public Works Department for the Defendant, City of Hamilton, which is a corporation.
- I have conducted a diligent search of the corporation's records and made appropriate enquiries of others to inform myself in order to make this Affidavit. This Affidavit discloses, to the full extent of my knowledge, information and belief, all documents relevant to any matter in issue in this action that are or have been in the possession, control or power of the corporation.
- 3. I have listed in Schedule A those documents that are in the possession, control or power of the corporation and that it does not object to producing for inspection.
- 4. I have listed in Schedule B those documents that are or were in the possession, control or power of the corporation and that it objects to producing because it claims they are privileged, and I have stated in Schedule B the grounds for each such claim.
- 5. I have listed in Schedule C those documents that were formerly in the possession, control or power of the corporation but are no longer in its

possession, control or power and I have stated in Schedule C when and how it lost possession or control of or power over them and their present location.

6. The corporation has never had in its possession, control or power any documents relevant to any matter in issue in this action other than those listed in Schedules A, B, and C.

SWORN BEFORE ME at the City of Hamilton, in the Province of Ontario, this Solday of Toy, 2018

MARCO ODDI

A Commissioner, etc.

#### LAWYER'S CERTIFICATE

I CERTIFY that I have explained to the deponent,

- (a) the necessity of making full disclosure of all documents relevant to any matter in issue in the action; and,
- (b) what kinds of documents are likely to be relevant to the allegations made in the pleadings.

Dated: May 3/18

DANA-ELISABETA LEZAU

## SCHEDULE "A"

Documents in the corporation's possession, control or power that it does not object to producing for inspection.

## **PLEADINGS**

All pleadings and proceedings relating to Court File No. 17-61728.

## **CORRESPONDENCE**

| <u>No.</u> | <u>Date</u>       | Document       | Sender                                | Recipient                           | No. of Pages |
|------------|-------------------|----------------|---------------------------------------|-------------------------------------|--------------|
| 1.         | December 18, 2015 | Notice Letter  | Nolan Glenn,<br>Nolan<br>Paralegals   | City of<br>Hamilton                 | 2            |
| 2.         | December 23, 2015 | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 3            |
| 3.         | February 25, 2016 | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 1            |
| 4.         | April 8, 2016     | Correspondence | Adam Tollis,<br>Cunningham<br>Lindsey | Nolan Glenn,<br>Nolan<br>Paralegals | 1            |

## **INVESTIGATION**

| No. | <u>Date</u>                          | Document                                                   | Sender/Creator                    | Recipient | No. of Pages |
|-----|--------------------------------------|------------------------------------------------------------|-----------------------------------|-----------|--------------|
| 5.  | October 1, 2013 –<br>October 31 2015 | Hansen Search, Red Hill<br>Valley Parkway                  | Public Works,<br>City of Hamilton |           | 90           |
| 6.  | October 2013                         | Red Hill Valley Parkway<br>Safety Review                   | CIMA                              |           | 114          |
| 7.  | October 24, 2015                     | Amec Weather Forecast  – Hamilton North Zone               | Public Works,<br>City of Hamilton |           | 4            |
| 8.  | October 24, 2015                     | Daily and Monthly<br>Environment Canada<br>Weather Records | Environment<br>Canada             |           | 5            |
| 9.  | October 24, 2015                     | Hamilton Police Service                                    | Hamilton Police                   |           | 28           |

|     |                    | Records including Motor<br>Vehicle Accident Report<br>#15-739738, duty notes<br>and 911 call on disc | Service                           |                           |    |
|-----|--------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|----|
| 10. | October 24, 2015   | Hansen Printout re MVA<br># 15-739738                                                                | Public Works,<br>City of Hamilton |                           | 1  |
| 11. | November 2015      | Red Hill Valley Parkway<br>Detailed Safety Analysis                                                  | CIMA                              |                           | 88 |
| 12. | April 4, 2016      | Hamilton Strategic Road<br>Safety Program Update                                                     | Public Works,<br>City of Hamilton | Public Works<br>Committee | 18 |
| 13. | May 11, 2016       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 3  |
| 14. | May 20, 2016       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 4  |
| 15. | September 19, 2016 | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 2  |
| 16. | October 3, 2016    | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 4  |
| 17. | January 16, 2017   | Information Report                                                                                   | Public Works,<br>City of Hamilton | Public Works<br>Committee | 1  |
| 18. | March 24, 2017     | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 3  |
| 19. | April 13, 2017     | Report - Five Year<br>Statistical Analysis of<br>Fatal Collisions in<br>Hamilton                     | Hamilton Police<br>Services Board |                           | 23 |
| 20. | May 19, 2017       | Information Update                                                                                   | Public Works,<br>City of Hamilton | Mayor and<br>City Council | 5  |
| 21. | April 20, 2018     | 26 Colour Photographs of accident location                                                           | Cunningham<br>Lindsey             |                           | 26 |



## Service Request Information (Hansen)

13369561

SR # 13369561

Request Type TRRC - Road Closures/Barricades

Request Date 24/10/2015 17:44

Taken By 121475-0

Incident Date

Priority -

Responsibility TRAD - ROADS AFTER HOURS DAYS

Project

Address RED HILL VALLEY PKY / BARTON ST E HAMILTON

Location pylons - at the Queenston southbound on ramp - officer on site

Additional Information police called back at 19:06 for barricade pick up - was on the phone with Sam and relayed the info for

Due By

Due By

Due By

Due By

pick up

Inspection

Inspector 013956-0

Scheduled 24/10/2015 17:47

Started Completed

Resolved 23/02/2017 12:50

Resolution TRPS - PROBLEM SOLVED

**Contacts Information** 

Call Date: 24/10/2015 05:44 pm

Primary Caller

Customer Ref No

Name police

Address

Taken By: 121475-0

Customer Comments P15-739738

Printed Date Time:

19/09/2017 11:41:09

Report Location

Embedded Hansen 8 Report

By Engineering Systems and Data Collection

Page 1 of 1

Area WARD4-5

Sub-area

Reference #

Reviewed By Reviewed Date

Day Phone

**EMAIL** 

District

Source

Last Modified By cagallant

Last Modified Date Time 23/02/2017 12:50:43

Severity

Eve/Cell Phone



City of Hamilton

# Red Hill Valley Parkway Detailed Safety Analysis

**FINAL** 

November 2015

B000558

| PREPARED BY:                      |   |   |         |       |  |
|-----------------------------------|---|---|---------|-------|--|
| FREFARED DI.                      |   |   |         |       |  |
| Giovani Bottesini, P.Eng., M.Eng. |   |   |         |       |  |
| Khaled Hawash, B.Sc. Eng.         |   |   |         |       |  |
|                                   | 5 |   |         |       |  |
|                                   |   | * |         |       |  |
|                                   |   |   |         |       |  |
| REVIEWED BY:                      |   |   |         |       |  |
|                                   |   |   |         |       |  |
| Maurice Masliah, Ph.D.            |   |   |         |       |  |
|                                   |   |   |         |       |  |
|                                   |   |   |         |       |  |
| VEDIEIED DV.                      |   |   |         |       |  |
| VERIFIED BY:                      |   |   |         |       |  |
| Brian Malone, P. Eng., PTOE       |   |   |         |       |  |
| bilaii maiolie, F. Lligi, FTOL    |   |   | erara - | 700 E |  |
|                                   |   |   |         |       |  |

# **Table of Contents**

| 1.  | Int  | roduction and Background                                       | 1  |
|-----|------|----------------------------------------------------------------|----|
|     | 3    | 44                                                             |    |
| 2.  | Stu  | udy Purpose                                                    | 1  |
| 3   | Ctı  | udy Area                                                       | 2  |
| J.  | Ott  | ady Alea                                                       |    |
| 4.  | Re   | view of Collisions                                             | 3  |
| 161 |      | Review of Collision Characteristics Considering All Collisions |    |
|     |      | 4.1.1 Light, Environment and Road Surface Conditions           |    |
|     | *    | 4.1.2 Collision Impact Type                                    |    |
|     | ,    | 4.1.3 Apparent Driver Action                                   | 7  |
|     |      | 4.1.4 Spatial Distribution                                     |    |
|     | 4.2  | Median Related Collisions                                      |    |
|     |      | 4.2.1 Collision Severity                                       | 12 |
|     |      | 4.2.2 Light, Environment and Road Surface Conditions           | 13 |
|     |      | 4.2.3 Apparent Driver Action                                   | 14 |
|     |      | 4.2.4 Spatial Distribution                                     | 15 |
|     | 4.3  | Summary of Collision Review                                    | 17 |
| _   |      |                                                                |    |
| 5.  |      | eld Investigation                                              |    |
|     |      | Roadside Safety Devices                                        |    |
|     | 5.2  | Traffic Operations                                             |    |
|     |      | 5.2.1 Operating Speeds                                         |    |
|     |      | 5.2.2 Merging Behaviour                                        |    |
|     |      | Pavement Surface                                               |    |
|     | 5.4  | Signage                                                        |    |
|     |      | 5.4.1 'Slippery When Wet' Signs                                |    |
|     |      | 5.4.2 Object Marker Signs – Various Locations                  |    |
|     |      | 5.4.3 'Merge' Signs                                            |    |
|     | 5.5  | Pavement Markings and Delineation                              | 29 |
| 6.  | IIIu | mination Review                                                | 31 |
| **  |      |                                                                |    |
| 7.  | Dei  | termination of Potential Countermeasures                       | 33 |

# **List of Figures**

| Figure 1: Study area                                                                    |    |
|-----------------------------------------------------------------------------------------|----|
| Figure 2: Collision severity                                                            |    |
| Figure 3: Collisions by light condition                                                 |    |
| Figure 4: Collisions by environment condition                                           |    |
| Figure 5: Collisions by road surface condition                                          |    |
| Figure 6: Collisions by impact type and roadway surface condition                       | ·i |
| Figure 7: Apparent driver action                                                        |    |
| Figure 8: Spatial distribution of collisions considering all collisions                 | 10 |
| Figure 9: Spatial distribution of wet vs. dry surface collisions                        | 1  |
| Figure 10: Summary of median related collisions.                                        | 12 |
| Figure 11: Median related collisions by light condition                                 | 13 |
| Figure 12: Median related collisions by environment condition                           | 14 |
| Figure 13: Median related collisions by roadway surface condition                       | 14 |
| Figure 14: Median related collisions by apparent driver action                          | 18 |
| Figure 15: Spatial distribution of median related collisions                            | 16 |
| Figure 16: Critical collision locations                                                 | 18 |
| Figure 17: Evidence of loss of control towards the median / collisions with guide rails | 21 |
| Figure 18: RHVP typical guide rail leaving end treatment                                | 22 |
| igure 19: Potential trajectory of a vehicle towards fishtail end treatment              | 22 |
| igure 20: Vegetation obscuring view of vehicles approaching from on-ramp                | 25 |
| igure 21: Temporal trend: wet surface collisions                                        | 26 |
| igure 22: SLIPPERY WHEN WET sign + BRIDGE ICES tab sign                                 | 27 |
| rigure 23: SLIPPERY WHEN WET sign (left) and BRISGE/ROAD ICES sign (right)              | 27 |
| igure 24: Examples of Missing, Damaged and Obscured Object Marker Signs                 | 28 |
| igure 25: Pavement markings during daytime condition                                    | 30 |
| igure 26: Pavement markings during nighttime condition (without PRPMs)                  | 30 |
| igure 27: Pavement markings during nighttime condition (with PRPMs)                     | 31 |

# Appendices

Appendix A: Over-Representation Analysis

Appendix B: Illumination Warrants

Appendix C: Evaluation of Providing a Median Barrier

Appendix D: Benefit-Cost Analysis for Other Countermeasures

# 1. Introduction and Background

The planning and design of the Red Hill Valley Parkway (RHVP) has a long history in Hamilton. In December of 1982, the original Environmental Assessment (EA) documents were filed by the former Region of Hamilton-Wentworth that outlined the need, scope and timing for the expansion of the Regional road network. The EA identified that a roadway connecting Highway 403 in Ancaster to the QEW in east Hamilton was required. The original design for the roadway was completed in 1985, and the EA was approved by the Province in 1987. A subsequent Preliminary Design Report for the RHVP was completed in January of 1990.

Construction of the Valley portion of the Parkway was begun in the early 1990s. Some aspects of funding, but not approvals, were halted and the project restarted in the mid-2000's. Construction of the Lincoln Alexander Parkway portion of the roadway went ahead and was completed in 1997, extending from Highway 403 to Dartnall Road.

In the early 1990's, the City entered into discussions with the Provincial government on how to further reduce impacts to the environment within the Valley section of the road. As a result of these discussions, in 1996, the City requested from the Province that they be allowed to undertake changes to the original designs and undertake a new EA. The Province approved this request in 1997 and work on the design changes and the new EA were begun and the City undertook an Impact Assessment and Design Process (IADP).

In 1999 the project was subject to panel hearing under the Canadian Environmental Assessment Act (CEAA). Construction in the Valley was placed on hold until 2002 when issues were resolved. In 2003 the design changes and the IADP were completed and construction on the Parkway recommenced. In 2007, the Red Hill Valley Parkway was opened to traffic and has been in operation since, forming part of a continuous connection from Highway 403 and the QEW in conjunction with the Lincoln Alexander Parkway. The road serves both intra-city traffic and inter-city traffic since it forms a connection between Niagara Region and South West Ontario.

Traffic volumes on the road are high, and, although Average Daily Traffic (ADT) has increased from approximately 46,000 vehicles in 2008, it has been oscillating between 55,000 and 59,000 from 2009 to 2014. Traffic conditions on the RHVP can become congested as the road reaches capacity, particularly during peak hours.

There were 474 collisions on the RHVP mainline between January 1, 2008 and July 23, 2015, an average of 62.5 collisions per year. There were 131 median related collisions, involving vehicles hitting guide rails/concrete barriers, resting on the grass median, or crossing over to the opposite direction during this time period, median related collisions were 28% of total collisions and include 1 fatal collision (2 fatalities) and 56 non-fatal injury collisions.

# 2. Study Purpose

The purpose of this study is to review the safety and operational performance along the entire length of the RHVP (from the QEW interchange to the Dartnall Road interchange), and to identify measures

that could potentially improve performance and reduce the number and/or the severity of collisions. In 2013, CIMA Canada Inc. (CIMA) conducted a safety review of the section of the RHVP between the Dartnall Road and Greenhill Avenue interchanges, providing a series of recommendations to improve safety.

This study has an extended area of review in comparison with the 2013 study, and particular focus has been paid to collisions related to the median and median crossover, as well as the potential need for illumination. The study completed the following tasks:

- Investigate the role of road-related factors in collisions;
- Complete a road safety assessment and field investigation;
- Evaluate of the need for and type of potential countermeasures, including median barrier system(s) and illumination; and
- Complete a benefit / cost analysis for all viable countermeasures.

The scope of the study does not allow for consideration of any major changes in the geometric design of the road including elements related to interchange spacing.

# 3. Study Area

The study area segment of the RHVP extends for 8.1 km, mostly in the north-south direction from approximately 500 m west of the Dartnall Road interchange in the south to the railway overpass approximately 500 m north of Barton Street in the north. The study area includes six full access interchanges of various design types. **Figure 1** illustrates the study area.



Figure 1: Study area

The RHVP is a 4-lane divided parkway between its north end and Greenhill Avenue, and a 5-lane divided parkway between Greenhill Avenue and its south end. In this section, there is an additional southbound lane due to the existing uphill grade. Controlled access is provided through interchanges with on and off ramps. The posted speed of the road is 90 km/h, and the design speed is assumed to be 110 km/h.

The divider between directions is a raised grassy median for most of the length of the RHVP. The exception is a section starting close to the Mud Street West interchange and continuing north, 1,100 m, towards Greenhill Avenue where a concrete barrier divides the road. Occasionally, steel beam guide rails are present primarily to protect motorists from fixed object hazards such as overhead signs and bridge structures located within the median. The median is buffered from the travel lanes by a paved shoulder. The median is flush, and there is no curb and gutter.

The roadway is not continually illuminated. Partial illumination is available at exit and entrance ramps.

Based on traffic counts provided by the City for a permanent count station located near Queenston Road, two-way Average Daily Traffic (ADT) for the RHVP ranges approximately between 55,000 and 60,000 (Table 1). Due to limited data available to determine Average Annual Daily Traffic (AADT), these volumes are daily averages over 1-week periods in the months of May or October. These months were selected by the City based on consistency of available data over the years.

Year Week ADT 2008 October 20 - 26 45,749 2009 October 19 - 26 55,833 2010 October 18 - 25 59,123 2011 May 1-8 55,406 2012 May 20 - 26 57,812 2013 Data not available 2014 May 21 - 27 58,444 2015 Data available only for Winter and Summer

Table 1: RHVP average daily traffic

## 4. Review of Collisions

Collision data was reviewed to gain an in-depth understanding of the safety issues within the study area. CIMA reviewed the results of the collision analysis provided by the City, which was conducted for the period from January 1, 2008 (following opening of the RHVP) to July 23, 2015 (latest data available). CIMA conducted the review of collision characteristics in two parts. The first considered all types of collisions within the study area, which is detailed in Section 4.1. The second part considered only those collisions that are related to medians and is detailed in Section 4.2.

# 4.1 Review of Collision Characteristics Considering All Collisions

The study area experienced a total of 474 collisions during the period from January 1, 2008 to July 23, 2015. The data, broken down by collision severity, is summarized in **Figure 2**. There were 4 fatal collisions (resulting in 5 fatalities), 205 injury collisions, and 265 Property Damage Only (PDO) collisions.



Figure 2: Collision severity

11 L vrome dodreodo

Figure 3 through Figure 5 summarizes the collisions in the study area, broken down by light, environment and road surface condition.

The majority of collisions occurred under daylight/daylight artificial conditions, with a total of 300 out of 474 collisions (63.3%), with the remaining 174 (36.7%) collisions occurring during non-daylight conditions, which include dark/dark artificial, dusk/dusk artificial, and dawn/dawn artificial. When compared to the Provincial average of 30.7%¹ and the City of Hamilton average of 36.3%², and based on a Chi-Square statistical test, the proportion of collisions under non-daylight condition is significantly higher, however the range of this distribution can be considered normal. Details about the statistical test can be found in **Appendix A**, and a discussion regarding the need for illumination in the study area can be found in **Section 6 – Illumination Review**.

<sup>2</sup> 2008-2010 Traffic Safety Status Report, City of Hamilton, 2010.

CIMA+ // Partners in excellence

<sup>&</sup>lt;sup>1</sup> Ontario Road Safety Annual Report (ORSAR), Ontario Ministry of Transportation, 2012.



Figure 3: Collisions by light condition

With respect to environment condition, 275 out of 474 collisions (58.0%) occurred with clear weather; 160 (33.7%) with rainy weather, and the remaining collisions with other weather conditions, including snow, drifting snow, freezing rain, strong wind, and fog/mist/smoke/dust. Compared to the Provincial average of 10.9%³ and the overall City of Hamilton average of 13.4%⁴, and based on a Chi-Square statistical test, the proportion of collisions under rainy weather is significantly higher. Details about the statistical test can be found in **Appendix A**.



Figure 4: Collisions by environment condition

<sup>&</sup>lt;sup>3</sup> Ontario Road Safety Annual Report (ORSAR), Ontario Ministry of Transportation, 2012.

<sup>&</sup>lt;sup>4</sup> 2008-2010 Traffic Safety Status Report, City of Hamilton, 2010.

Wet surface collisions make up the majority of collisions in the study area, with 50.4% (239 out of 474), followed by dry surface with 43.9% (208 out of 474). When compared to the Provincial average of 17.6% and the City of Hamilton average of 22%, and based on a Chi-Square statistical test, the proportion of collisions under wet road surface is significantly higher. Details about the statistical test can be found in **Appendix A**.



Figure 5: Collisions by road surface condition

## 4.1.2 Collision Impact Type

**Figure 6** summarizes collisions by impact type and by roadway surface condition.<sup>5</sup> Single motor vehicle collisions (SMV) collisions are the most prevalent collision type with 208 incidents of a total of 474 collisions (44%). Rear end and sideswipe collisions with 116 (24%) and 108 (23%) incidents, respectively, were the next most common collision types.

Out of the 208 SMV collisions, 117 (56.3%) occurred under wet surface conditions, as well as 45 out of 116 rear end collisions (38.8%) and 56 out of 108 sideswipe collisions (51.9%).

<sup>&</sup>lt;sup>5</sup> Due to the high proportion of wet surface collisions, as discussed in Section 4.1.1, all remaining sections of the collision review will be combined with wet surface collisions.



Figure 6: Collisions by impact type and roadway surface condition

## 4.1.3 Apparent Driver Action

Figure 7 summarizes the collisions in the study area according to the apparent driver action, including total collisions and wet surface collisions. The most frequent apparent driver action reported is "lost control", with 165 out of 474 collisions (34.8%), followed by "driving properly" (23.4%), "speed too fast" (12.4%), "following too close" (10.1%), and "improper lane change" (9.9%).



Figure 7: Apparent driver action

Table 2 provides a comparison of the different apparent driver actions reported in the study area with average proportions for the Province of Ontario and for the City of Hamilton. With the exception of "following too close", all improper driver actions are significantly higher (based on a Chi-Square

statistical test) than the provincial and municipal averages. The most outstanding discrepancy is "lost control", with a proportion over five times higher than the municipal average. In the table, the numbers in red indicate a significant difference between the study area and the comparison jurisdictions.

Table 2: Apparent driver action comparison

| Apparent Driver Action      | Study Area | Ontario | Hamilton |
|-----------------------------|------------|---------|----------|
| Driving properly            | 23.4%      | 50.6%   | 48.9     |
| Lost control                | 34.8%      | 9.0%    | 6.6%     |
| Speed too fast <sup>6</sup> | 12.4%      | 2.7%    | 5.5%     |
| Following too close         | 10.1%      | 7.9%    | 9.9%     |
| Improper lane change        | 9.9%       | -2.3%   | 3.4%     |

With respect to wet surface collisions, the proportions of the different apparent driver actions are generally similar to total collisions, as summarized in **Table 3**. "Speed too fast", however, stands out due to 81.4% of collisions involving this apparent driver action (48 out of 59 – refer to **Figure 7**) having occurred on wet surface.

Table 3: Apparent driver action for total and wet surface collisions

| Apparent Driver Action      | Total Collisions | Wet Surface Collisions |
|-----------------------------|------------------|------------------------|
| Driving properly            | 23.4%            | 23.8%                  |
| Lost control                | 34.8%            | 38.9%                  |
| Speed too fast <sup>7</sup> | 12.4%            | 20.1%                  |
| Following too close         | 10.1%            | 6.7%                   |
| Improper lane change        | 9.9%             | 4.2%                   |

## 4.1.4 Spatial Distribution

Figure 8 provides the spatial distribution of major collision types<sup>8</sup> within the study area in each direction. The locations with the highest concentration of collisions are:

- \* Northbound direction:
  - Vicinity of the King Street interchange (200 m upstream of off-ramp to on-ramp); and
  - Vicinity of Mud Street on-ramp.
- \* Southbound direction:
  - Vicinity of King Street on-ramp;
  - Vicinity of Queenston Road on-ramp; and

<sup>&</sup>lt;sup>6</sup> Includes "speed too fast", "speed too fast for condition", and "exceeding speed limit".

<sup>7</sup> Includes "speed too fast", "speed too fast for condition", and "exceeding speed limit".

<sup>8</sup> Includes SMV, rear end, sideswipe, overtaking and head on. These collision types make up 96% of all collisions in the study area.

### - Vicinity of Barton Street on-ramp.

Most of these locations have SMV collisions as the predominant collision type, the exception being Queenston Road southbound, where the predominant collision type is sideswipe (which is the second predominant collision type at the above mentioned locations, followed by rear end).

Out of the 249 northbound collisions shown in **Figure 8**, 78 (31%) are concentrated in a 600-metre section around the King Street interchange (between 250 metres south of the King Street off-ramp and the King Street on-ramp), a relatively short section of the 8.1 km study area. There were also 16 (6.4%) northbound collisions over a short 100-metre section near the Mud Street on-ramp.

Out of the 208 southbound collisions shown in **Figure 8**, 19 (9.1%), 21 (10.1%) and 22 (10.5%) are concentrated in 100-metre sections near the on-ramps of Queenston Road, Barton Street and King Street, respectively.

All locations mentioned above are within, on approach to, or leaving a horizontal curve, although some of these curves have a larger curve radius (e.g. Barton Street) and some have a smaller curve radius (e.g. King Street).

**Figure 9** provides the spatial distribution of comparing dry and wet surface collisions. In the northbound direction, the ratio of wet to dry surface condition collisions around the King Street interchange is 4.33 wet surface collisions for each dry surface collision. In the southbound direction, this proportion is 3 to 1 near the Queenston Avenue on-ramp, and 2.5 to 1 near the King Street and the Barton Street on-ramps. These ratios exceed the normal expectation of more dry surface than wet surface collisions.



Figure 9. Seatiel distribution of collisions considering all collis

CIMA+ // Partners in excellence



## 4.2 Median Related Collisions

The Motor Vehicle Collision (MVC) reports were manually screened to identify median related collisions. The collisions related to median can be grouped into three types:

- Collisions crossing over the median; where vehicles travelled across the centre median and entered the opposing lanes of traffic;
- Collisions mounting the median; where a vehicle ran-off the road and came to rest on the median, not entering opposing lanes of traffic; and,
- Collisions involving a guide rail or concrete barrier installed on the median (left) side of the road; where a vehicle hit the guide rail or concrete barrier and then rested in the same initial direction of travel, not mounting or crossing the median.

## 21 o o ever

There were 131 (28% of all collisions) median related collisions from January 1, 2008 to July 23, 2015 as illustrated in **Figure 10**. This is a collision frequency of 2.13 collisions / year / km. The number includes:

- 1 fatal collision (crossing over the median; 2 fatalities);
- 56 injury collisions (9 crossing over the median, 17 resting on the median, and 30 involving guide rail/concrete barrier); and
- ◆ 74 PDO collisions (7 crossing over the median, 26 resting on the median and 41 involving guide rail/concrete barrier).



Figure 10: Summary of median related collisions

As can be seen in **Figure 10**, 59% (10 out of 17) of the crossover collisions are severe, a higher proportion than median collisions (17 out of 43 or 40%), concrete barrier collisions (12 out of 25 or 48%), and guide rail collisions (18 out of 46 or 39%). As a result, the need for a median barrier will be investigated in this study.

## 22 L vrome dodreodo

Figure 11 through Figure 13 summarize the median related collisions in the study area, broken down by light, environment and road surface condition.

The majority of collisions occurred under daylight/daylight artificial conditions, with a total of 81 out of 131 collisions (62%), with the remaining 50 (38%) collisions occurring during non-daylight conditions, which include dark/dark artificial, dusk/dusk artificial, and dawn/dawn artificial. These proportions are very similar to the proportions for all collisions (Section 4.1.1).



Figure 11: Median related collisions by light condition

With respect to environment condition, 68 out of 131 collisions (52%) occurred with clear weather; 50 (38%) with rainy weather, and the remaining collisions with other weather conditions, including snow, drifting snow, freezing rain, strong wind, and fog/mist/smoke/dust. These proportions are somewhat similar to the proportions for all collisions (Section 4.1.1), although non-clear weather conditions are slightly higher for median related collisions than for overall collisions (48% and 42%, respectively).



Figure 12: Median related collisions by environment condition

Wet surface collisions make up the majority of median related collisions in the study area, with 53% (70 out of 131), followed by dry surface with 41% (54 out of 131). These proportions are somewhat similar to the proportions for all collisions (**Section 4.1.1**).



Figure 13: Median related collisions by roadway surface condition

# 2 A re rverA o

Figure 14 summarizes the median related collisions in the study area according to the apparent driver action. The most frequent apparent driver action reported is "lost control", with 60 out of 131

CIMA+ // Partners in excellence

collisions (46%), followed by "speed too fast" (18%), "driving properly" (17%), and "improper lane change" (8%). The proportions of "lost control" and "speed too fast" are 11 and 6 percent points higher than for all collisions (as shown in **Section 4.1.3**). Additionally, 43.5% of median related, wet surface collisions involved "lost control" driver action, as well as 29% "speed too fast".



Figure 14: Median related collisions by apparent driver action

2 rb o

Figure 15 provides the spatial distribution of all collisions and median related collisions within the study area in the northbound and the southbound directions.

A considerable proportion of median related collisions are concentrated in the vicinity of the King Street and Queenston Road interchanges. In the northbound direction, 32 out of 81 median related collisions (40%) are concentrated within a 600-metre section of road (between 250 metres south of the King Street off-ramp and the King Street on-ramp), equivalent to approximately 7.5% of the length of the study area. In the southbound direction, 19 out of 50 median related collisions (38%) are concentrated within a 1,100-metre section of road (between the Queenston Road on-ramp and 250 metres south of the King Street on-ramp), equivalent to approximately 13.5% of the length of the study area. Considering both directions combined, 57 out of 131 median related collisions (44%) are concentrated within 1,400 metres or 17% of the study area (between 250 metres south of the King Street NB off-ramp and the Queenston Road SB on-ramp). There were 7 crossover collisions in this section of the RHVP, 41% of a total of 17 in the study area. Out of these, 4 occurred in the northbound direction and 3 in the southbound direction.

The second highest concentration of median related collisions is located in the vicinity of the Mud Street interchange, with 25 collisions (19.5%) having occurred over a 1-km section of road (12.5% of the study area), 19 of which in the northbound direction (or 23.5% over 12.5% of the study area). However, a median concrete barrier is already present along most of this section.





Figure 15: Spatial distribution of median related collision

CIMA+ // Partners in excellence

Out of the 57 reported collisions in the vicinity of King Street and Queenston Road, 36 had a vehicle striking the guiderail or concrete barrier, 14 had a vehicle ending up resting on the median, and 7 had a vehicle crossing over to the opposing traffic lanes. While 63% of median related collisions in this area are guide rail related, only 36% of this 1,400-metre section of the RHVP has guide rail installations on the median (used to protect fixed object hazards such as overhead sign and bridge structures). This may indicate that locations where median related collisions are more likely to occur are already protected. However, as shown in **Table 4**, crossover collisions, as expected, have a higher proportion of severe collisions than guide rail collisions. Conversely, median collisions have a lower proportion of severe collisions than guide rail collisions. Therefore, the determination of whether a median barrier should be provided throughout this entire section should be made based on a benefit/cost analysis.

Table 4: Median related collisions in the vicinity of King Street and Queenston Road

| Median Related Collisions | Total | PDO      | Severe   |
|---------------------------|-------|----------|----------|
| Guide rail/concrete       | 36    | 22 (61%) | 14 (39%) |
| Median                    | 14    | 10 (71%) | 4 (29%)  |
| Crossover                 | 7     | 3 (43%)  | 4 (57%)  |

Finally, as discussed in **Section 4.2.2**, wet surface condition is present in 53% of median related collisions in the study area. When reviewing road surface condition for collisions in the vicinity of King Street and Queenston Road, however, it was found that this proportion increases to 74% (42 out of 57 collisions). This may indicate that addressing wet surface collisions could reduce median related collisions and significantly reduce the benefits of providing a median barrier.

# 4.3 Summary of Collision Review

#### **Overall Findings**

- Wet surface collisions were found to represent approximately 50% of all collisions in the study area, which is significantly high compared to typical proportions.
- Single Motor Vehicle (SMV) collisions amount to 44% of all collisions in the study area, followed by rear ends (24%) and sideswipes (23%).
  - 56% of SMV, 39% of rear end, and 52% of sideswipe collisions occurred under wet surface conditions.
- ★ The most frequent apparent driver action reported was "lost control" (35%"), followed by "driving properly" (23%) and "speed too fast" (12%). Both "lost control" and "speed too fast" are significantly high compared to typical proportions.
  - Approximately four out of every five collisions where "speed too fast" was reported occurred under wet surface condition.

#### **Critical Locations**

→ The locations with the highest collision frequencies along the RHVP are:

- In the northbound direction, a 600-metre section around the King Street interchange (31% of northbound collisions over 7.5% of the RHVP length); and
- In the southbound direction, 100-metre sections near the on-ramps of the Queenston Road, Barton Street and King Street (combined, approximately 30% of southbound collisions over 3.7% of the RHVP length).
- All locations with the highest collision frequencies are located within, on approach to, or leaving horizontal curves (Figure 16).



Figure 16: Critical collision locations

## Median Related Collisions

- 28% of all collisions in the study area were median related, including:
  - 1 fatal collision (crossover);
  - 56 injury collisions, including 30 guiderail/concrete barrier, 17 median, and 9 crossover; and
  - 74 PDO collisions, including 41 guiderail/concrete barrier, 26 median, and 7 crossover.
- Approximately 53% of median related collisions occurred under wet surface condition.
- The most frequent apparent driver action reported in median related collisions was "lost control" (46%"), followed by "speed too fast" (18%) and "driving properly" (17%). Both "lost control" and "speed too fast" proportions are higher than for all collisions.
  - These proportions are 43% for "lost control" and 29% for "speed too fast" driver actions under wet surface conditions.

#### Critical Locations for Median Related Collisions

- The locations with the highest collision frequencies along the RHVP are in the vicinity of the King Street and Queenston Road interchanges, including:
  - In the northbound direction, a 600-metre section around the King Street interchange (40% of northbound collisions over 7.5% of the RHVP length); and
  - In the southbound direction, a 1,100-metre section around the King Street and Queenston Road interchanges (38% of southbound collisions over 13.5% of the RHVP length).
  - In both directions combined, a 1,400-metre section around the King Street and Queenston Road interchanges (44% of collisions over 17% of the RHVP length).
  - Most median related collisions at the above locations involved a vehicle striking a guiderail, however crossover collisions were proportionally more severe.

.

Wet surface conditions were present in 74% of median related collisions at the above locations.

## Potential Contributing Factors to Collisions

The overall findings from the collision review indicate that the proportion of wet surface collisions in the study area is significantly higher than typically observed in the City and in the Province. A high proportion of wet surface condition suggests that one or more than the following conditions may be present:<sup>9</sup>

- Inadequate skid resistance (surface polishing, bleeding, contamination);
- Hazardous manoeuvres that may be related to avoidance manoeuvres or surface deficiencies (potholes, waves, other deformations, water accumulation); and/or
- Excessive speed.

It was also found that the prevalent apparent driver actions involved in collisions in the study area, both in general and median related, are 'lost control', 'speed too fast', and 'improper lane change'. According to the Ministry of Transportation's definition<sup>10</sup>, the "lost control" driver action is related to unexpected circumstances such as mechanical malfunction, object on roadway, slippery road surface or losing consciousness. It would not be unreasonable, however, to suppose that other driver actions such as excessive speed or driver distraction/inattention end up being coded as loss of control, especially for SMV collisions or other collisions where the police officer completing the accident report is not able to collect accurate information from witnesses.

Another indication that high speeds may be involved is the fact that some curves within the study area (in particular the four curves in the vicinity of King Street and Queenston Road) appear to have curve radii of approximately 525 metres<sup>11</sup>, which is the minimum per Provincial Standards for a design speed of 110 km/h and a maximum superelevation of 6%.<sup>12</sup> Under these circumstances, a vehicle slightly exceeding the design speed could run off the road while negotiating these curves. This section of the RHVP presents the highest concentration of collisions in the study area, with an increased proportion of wet surface collisions.

Finally, the consequences of improper lane changes tend to be aggravated at higher speeds and/or wet surface conditions, since it becomes more difficult for drivers to maintain control of the vehicle.

Further discussion regarding these conditions can be found in Section 5.

#### Conclusions

Based on the collision review, it appears that the combination of high speed and wet surface may be the primary contributing factors to collisions on the RHVP, especially in the vicinity of the interchanges of King Street and Queenston Road, where small-radius horizontal curves are present. This applies both to all collisions in the study area and to median related collisions only. The need for

<sup>&</sup>lt;sup>9</sup> Road Safety Manual, World Road Association, 2003.

<sup>&</sup>lt;sup>10</sup> Accident Information System – MS Access Query User Guide, Version 1.4, Ministry of Transportation Ontario, 2004.

<sup>&</sup>lt;sup>11</sup> Design information was not provided for these curves. Approximate measurements were taken from satellite imagery.

<sup>&</sup>lt;sup>12</sup> Geometric Design Standards for Ontario Highways, Ministry of Transportation Ontario, 1985. Table C3-2.

a median barrier, either along the entire study area or limited to the vicinity of the interchanges of King Street and Queenston Road, will be determined based on a benefit/cost analysis.

# 5. Field Investigation

A field investigation was conducted on Thursday, August 30, 2015 under clear weather conditions and during peak and off-peak periods. A night-time review was also conducted to assess visibility under reduced lighting conditions. CIMA staff was accompanied by City's maintenance staff during the daytime review in order to gain a better understanding of site conditions and operations, based on their daily experience on the RHVP.

The field investigation included a review and/or analysis of:

- Conformance and consistency
  - Related to site geometrics, traffic control devices and safety devices.
- Traffic control
  - Traffic signage and pavement markings (applicability, condition, function, and conspicuity).
- Site operations and road user interactions
  - Site operations;
  - · Road user operations and interactions, including human factors analysis;
  - Positive guidance; and
  - Traffic patterns and behaviour throughout the study area.
- Safety devices
  - Guiderail systems, approach/end treatments, crash cushions, post-mounted delineators etc.;
     and
  - Potential unprotected roadway and roadside hazards (non-existence of safety devices).
- Site conditions
  - Roadway surface, lighting, roadway safety hardware and the roadside; and
  - Physical evidence of road user collisions.

The findings of the field investigations are discussed in the following sections.

# 5.1 Roadside Safety Devices

The minimum required clear zone for a design speed of 110 km/h, according to the MTO's Roadside Safety Manual (Table 2.2.1) is 9.0 m for tangent road sections. The Roadside Safety Manual also provides Curve Correlation Factors (Table 2.2.2) that vary with design speed and curve radius. For a design speed of 110 km/h, these factors range between 1.00 (R = 1,000 m) and 1.44 (R = 500 m). The Curve Correlation Factor is a multiplier meaning that the minimum required clear zone at a curve section at this design speed can be as wide as 13 m (1.44 x 9.0) at certain locations.

CIMA conducted a review of the barrier systems within the study area. The barrier systems currently employed on the RHVP include steel beam guiderail and concrete barriers, which are provided in limited areas. All overhead signs and bridge columns located in the median within the study area are protected with steel beam guide rails, and a median concrete barrier is present along a 1,100 m section from Mud Street West towards Greenhill Avenue, where the distance between the traffic lanes in opposite directions is approximately 8.5 m (i.e. less than the clear zone).

The review of collision history revealed a large number of median related collisions including one fatal collision. During the field investigation, evidence of vehicles losing control towards the median was found, including skid marks and damage to guide rails, as illustrated in **Figure 17**. With the exception of the 1,100 m section between Mud Street West and Greenhill Avenue, the median does not have a continuous barrier to protect against median cross-over collisions. The study area was further evaluated regarding the benefits and drawbacks of providing a median barrier. Findings are provided in **Section 7**.







Figure 17: Evidence of loss of control towards the median / collisions with guide rails

It was also noted that some "fishtail" leaving end treatments at some guide rails protecting bridge structures are located within the clear zone of the opposite direction of traffic (**Figure 18**). When this is the case, the guide rails at the opposite direction do not provide the required length of need to protect the end treatment (**Figure 19**). This type of end treatment can represent a spearing hazard in the event of a frontal collision and should be protected when located within the clear zone.



Figure 18: RHVP typical guide rail leaving end treatment



Figure 19: Potential trajectory of a vehicle towards fishtail end treatment

# 5.2 Traffic Operations

## 521 er eed

During the field investigation, most drivers, during periods of uncongested traffic conditions, were observed to be driving over the speed limit of 90 km/h. CIMA reviewed the speed studies conducted for the 2013 RHVP study, particularly along the mainline section between Mud Street and Greenhill Avenue. The results of the speed studies are summarized in **Table 5**. The results show that the average speeds in each direction are in excess of the posted speed limit. The 85<sup>th</sup> percentile speed, which is typically used to represent the operating speed of a road, is the same as the assumed design speed of the RHVP for the northbound direction, and 5 km/h in excess of the assumed design speed for the southbound direction. Approximately one in six drivers exceed the design speed in the northbound direction, and approximately one in five in the southbound direction. The high speeds

CIMA+ // Partners in excellence

observed on the RHVP may be a contributing factor for collisions, especially SMV and/or wet pavement related collisions. An average of more than 500 vehicles per day were recorded exceeding 140 km/h.

Table 5: RHVP operating speeds

| Measure                           | Northbound | Southbound |
|-----------------------------------|------------|------------|
| Average speed                     | 95 km/h    | 99 km/h    |
| 85 <sup>th</sup> percentile speed | 110 km/h   | 115 km/h   |
| Exceeding speed limit             | 60%        | 72%        |
| At or exceeding design speed      | 15%        | 22% .      |
| Exceeding 140 km/h                | > 500 p    | er day     |

Location: Mainline between Mud St. and Greenhill Ave.

Date: May 2013

Given the high operating speeds, as well as the high concentration of collisions in the vicinity of the King Street and Queenston Road interchanges, where a sequence of curves of relatively small radii is present<sup>13</sup>, a ball bank indicator study was conducted to gain additional understanding of the potential collision contributing factors. Ball bank indicator studies are typically utilized to determine curve advisory speeds. The test provides a combined measure of centrifugal force, vehicle roll and superelevation of the road by measuring the angle of the ball bank indicator while travelling through a curve at a given speed. The study was conducted on Tuesday September 1<sup>st</sup>, 2015, at travel speeds of 90, 100, and 110 km/h along the left lane (i.e. the lane closest to the median) of the RHVP in each direction. Because the testing required exceeding the speed limit of the road, the study was conducted in a Hamilton Police Service cruiser driven by a police officer to ensure safety of staff and general public. **Table 6** provides a summary of the ball bank indicator study, for each direction and travel speed, compared to thresholds available in the Traffic Engineering Handbook.<sup>14</sup>

Table 6: Ball bank indicator thresholds and test results

| Travel Speed       | Threshold 14 | Test Speed (km/h) | Maximum Reading NB | Maximum Reading SB |  |
|--------------------|--------------|-------------------|--------------------|--------------------|--|
|                    |              | 110               | 12.2               | 10.5               |  |
| ≥ 30 mph (48 km/h) | . 12         | 100               | 10.8               | 9.0                |  |
|                    |              | 90                | 9.4                | 7.1                |  |
| 20-25 (32-40 km/h) | 14           |                   | Netterted          |                    |  |
| ≤ 20 (32 km/h)     | 16           |                   | Not tested         |                    |  |

The results of the ball bank study indicate that a travel speed of 90 km/h, which is equal to the posted speed limit, is well below the maximum threshold of the ball bank indicator. As the test speed increases, the readings also increase, slightly exceeding the threshold in the northbound direction at 110 km/h. This reading was recorded at the King Street interchange. It should be noted that the

<sup>14</sup> ITE Traffic Engineering Handbook (6<sup>th</sup> Edition). Table 11-2.

<sup>&</sup>lt;sup>13</sup> Curve radii near the King Street and Queenston Road interchanges are approximately 525 m, which corresponds to the minimum for a design speed of 110 km/h (Geometric Design Standards for Ontario Highways, Table C3-2)

thresholds provided in the Traffic Engineering Handbook are based on driver comfort, not safety. However, the circumstances under which the test was conducted are likely safer than the ones under which collisions are occurring, including:

- The test was conducted under dry surface conditions, while most collisions reported in this area occurred under wet surface conditions;
- The test was conducted with a Police Cruiser (2011 Ford Crown Victoria, Police Package), which may have a more stable suspension and may result in readings lower than the average passenger car; and
- The test was not conducted at speeds higher than 110 km/h. As shown in Table 6, at least 15% of drivers exceed this speed.

## 522 Mer Be vor

The RHVP is mostly used by commuter traffic, meaning drivers are expected to be familiar with the road. During the field investigation, it was noted that, occasionally, drivers entering the RHVP from an on-ramp tend to do so in a somewhat aggressive fashion, merging onto the mainline as soon as they reach the dashed line at the acceleration lane. This may be due to a potential perception by drivers that some acceleration lanes along the RHVP are too short (especially considering the high operating speeds as shown in **Section 5.2.1**), and may contribute to sideswipe and SMV collisions (as drivers on the mainline swerve to avoid a sideswipe collision with a merging vehicle). Additionally, some on-ramps in the study area present relatively high vegetation that may restrict visibility, to drivers on the mainline, of approaching vehicles from the ramps (**Figure 20**), which has the potential to violate drivers' expectancy related to merging traffic.

**Section 5.4.3** discusses the application of MERGE warning signs on the RHVP, used to alert drivers of unfavorable merging conditions.

DOUGER



Figure 20: Vegetation obscuring view of vehicles approaching from on-ramp

## 5.3 Pavement Surface

The high proportion of wet surface related collisions observed in the study area may indicate a potential issue with pavement skid resistance. According to City staff, Stone Mastic Asphalt (SMA) was utilized in the RHVP. SMA pavements, originally developed in Germany, are designed to provide better resistance to permanent deformation, wearing, cracking due to cold or mechanical stress<sup>15</sup>, as well as to provide reduced noise levels due to its negative surface texture reducing vibrations in the tire and connected air paths reducing 'air pumping' noise.<sup>16</sup>

One industry identified characteristic of SMA pavements is that skid resistance is lower by approximately 30 to 40% (under dry conditions) in newer surfaces, reaching normal levels after 6 to 18 months, depending on local conditions and traffic levels. <sup>16</sup> However, as shown in **Figure 21**, the proportion of wet surface collisions seems to be increasing over the years. <sup>17</sup> This suggests that, if low skid resistance is a contributing factor, it is not necessarily related to the normal early life properties of SMA pavements.

<sup>&</sup>lt;sup>15</sup> Stone Mastic Asphalt Guide, German Asphalt Association. Bonn, Germany (2000). English Translation: 2005.

<sup>&</sup>lt;sup>16</sup> Greer, G. Stone Mastic Asphalt – A review of its noise reducing and early life skid resistance properties. Proceedings of ACOUSTICS 2006. Christchurch, New Zealand (2006).

<sup>&</sup>lt;sup>17</sup> The significant drop in wet surface collisions in 2015 is not conclusive since the data analysis only included collision records between January and July. Wet surface collisions are expected to be lower in the winter period since snow, ice and slush conditions are more frequent than wet surface.



Figure 21: Temporal trend: wet surface collisions

Another potential contributing factor for wet pavement collisions are the high speeds observed on the RHVP. As discussed in **Section 5.2.1**, operating speeds are generally equal to or higher than the design speed of the road. This is reinforced by the high concentration of SMV collisions near horizontal curves.

## 5.4 Signage

CIMA reviewed signage on approach to and within the study area. Signage was checked for conformity to appropriate OTM Books, for application, size and approximate placement. Our review of the study area revealed the following findings.

# 5.4.1 'Slippery When Wet' Signs

OTM Book 6 (Warning Signs) states that SLIPPERY WHEN WET signs (Wc-5) should be used:

- At locations where field investigations determine that a pavement has a significantly reduced wet weather skid resistance;
- Where for no other identifiable reason more than one third of all collisions on a given section of highway are occurring on wet pavement;
- At locations which consistently have an abnormally high number of wet weather conflicts or collisions; or
- ♣ For other reasons related to wet pavement hazards, under approval from the local Road Authority.

OTM Book 6 also indicates the options to install SLIPPERY WHEN WET tab signs (Wc-5t), to increase motorist familiarity with the symbol, or ADVISORY SPEED tab signs (Wa-7t), to indicate the safe speed for driving along a section of road in conjunction with the Wc-5 sign.

OOOEER

Given the existing proportion of wet pavement collisions (50%), oversize SLIPPERY WHEN WET signs (Wc-105) should be used in the study area. Four of these signs are installed along the RHVP, however they are placed immediately in advance of two bridges (one between Mud Street and Greenhill Avenue, and one between Barton Street and the north end of the study area) and combined with BRIDGE ICES tab signs (Figure 22). This tab sign is not part of the current version of OTM Book 6, although it will be included in the updated version, expected to be published in 2015. However, this tab will be recommended for use with the new BRIDGE/ROAD ICES sign, which will have the same design as the WC-23 "Bridge Ices" sign from the Manual of Uniform Traffic Control Devices for Canada (MUTCDC). Figure 23 illustrates the two different signs.



Figure 22: SLIPPERY WHEN WET sign + BRIDGE ICES tab sign



Figure 23: SLIPPERY WHEN WET sign (left) and BRISGE/ROAD ICES sign (right)

Because these two signs are intended to convey different messages, the use of the SLIPPERY WHEN WET sign to represent both "slippery when wet" and "bridge ices" conditions is not recommended, as this may create confusion for drivers (although the tab helps clarify the different conditions). This is especially important on the RHVP, since both conditions are possible and should be signed accordingly.

CIMA+ // Partners in excellence

## 5.4.2 Object Marker Signs – Various Locations

Several guide rail approach end treatments were found to have missing, damaged, or obscured OBJECT MARKER signs (Wa-33). **Table 7** provides a list of all identified locations, and **Figure 24** illustrates these three conditions.

| Table 7: Missing object marker signs at quide rail approach end treatments | Table 7 | Missing object | marker signs at | quide rail | approach end | treatments |
|----------------------------------------------------------------------------|---------|----------------|-----------------|------------|--------------|------------|
|----------------------------------------------------------------------------|---------|----------------|-----------------|------------|--------------|------------|

| Direction | Location                                            | Side   | Issue                            |
|-----------|-----------------------------------------------------|--------|----------------------------------|
| EB        | Upstream of Dartnall interchange                    | Left   | Obscured by vegetation           |
| EB .      | Upstream of Stone Church/Mud interchange            | Left   | Obscured by vegetation           |
| ŃВ        | Underneath Mud overpass                             | Left   | Obscured by vegetation           |
| ŅB .      | Downstream of Mud interchange                       | Left   | Obscured by vegetation           |
| NB        | Downstream of Mud interchange                       | Right  | Missing                          |
| NB .      | Underneath Greenhill overpass                       | Left   | Damaged                          |
| NB        | Downstream of Greenhill interchange                 | Left   | Missing                          |
| NB        | Underneath railway overpass btwn Greenhill and King | Left   | Damaged                          |
| SB        | Downstream of Barton interchange                    | Left   | Missing                          |
| SB        | Underneath Mud overpass                             | Left   | Obscured by vegetation           |
| SB        | Underneath Pritchard overpass                       | Left   | Damaged / Obscured by vegetation |
| SB        | Downstream of Pritchard overpass                    | · Left | Missing                          |







Figure 24: Examples of Missing, Damaged and Obscured Object Marker Signs

## 5.4.3 'Merge' Signs

According to OTM Book 6, MERGE signs (Wa-16) alert drivers that vehicles from the other roadway (acceleration lanes from ramps entering a freeway being an example) may soon be entering the lane in which they are travelling, and that they must exert caution and adjust their positioning to accommodate the ingress of vehicles. They are also used to provide warning to traffic entering the roadway that they do not have the right of way and must prepare to merge with through traffic. Some interchanges in the study area have MERGE signs warning about the acceleration lane, while some do not.

OTM Book 6 indicates that a MERGE sign should be used:

- Where the merging traffic conditions are unexpected, out of the road user's view, or otherwise not obvious to the road user; and
- Where the length of an acceleration lane and/or taper is within the range of values specified in [OTM Book 6 Table 9].18

The RHVP presents some unexpected merging traffic conditions, including some on-ramps and acceleration lanes within horizontal curves and aggressive merging behaviour, as discussed in **Section 5.2.2. Table 8** indicates the locations where MERGE signs are present/not present, as well as requirement for the sign based on length of acceleration lane and/or taper.

Table 8: MERGE sign presence and requirements on the RHVP

| Direction | Ramp            | Merging Condition                                                             | Accel.+Taper       | Present | Required |
|-----------|-----------------|-------------------------------------------------------------------------------|--------------------|---------|----------|
| EB        | Dartnall S-E    | On-ramp located within horizontal curve                                       | 293+58 m           | Yes     | No       |
| NB        | Mud E-N         | On-ramp located within horizontal curve                                       | 443+62 m           | Yes     | No       |
| NB-:-     | Greenhill E-N   | Weaving area                                                                  | -, n/a . · · · · · | No      | No -     |
| NB        | King E/W-N      | Weaving area; vehicles on ramp may become obscured by vegetation              | n/a                | No      | No       |
| NB        | Queenston E/W-N | On-ramp located within horizontal curve                                       | 150+85 m           | No      | Yes      |
| NB        | Barton E/W-N    | No concerns                                                                   | 145+65 m           | Yes     | Yes      |
| SB        | Barton E/W-S    | arton E/W-S Vehicles on ramp partially obscured by vegetation                 |                    | No      | Yes .    |
| SB        | Queenston E/W-S | Weaving area within horizontal curve                                          | n/a                | Yes     | No       |
| SB        | King E/W-S      | Vehicles on ramp significantly obscured by vegetation                         | 173+60 m           | Yes     | Yes      |
| SB        | Greenhill E-N   | Acceleration lane becomes through lane                                        | n/a                | No      | No       |
| SB        | Mud E-S         | On-ramp located within horizontal curve                                       | 130+85 m           | Yes     | Yes      |
| SB        | Dartnall S-W    | On-ramp located within horizontal curve, however acceleration lane on tangent | 202+72 m           | Yes     | No       |

#### 5.5 Pavement Markings and Delineation

Pavement markings within the study area were generally found to be in good condition at the time of the review and no issues were identified during daytime.

During night time, however, the absence of illumination makes it difficult for drivers to see the pavement markings ahead of the vehicle. The lane lines become visible for a longer distance south of Greenhill Avenue, where Permanent Raised Pavement Markers (PRPM) are installed. The PRPMs were recommended by CIMA in the 2013 RHVP Safety Review and seem to have improved visibility of lane lines. However, the edge lines remain difficult to see. Figure 25 through Figure 27

<sup>&</sup>lt;sup>18</sup> For a posted speed limit of 90 km/h, minimum and maximum lengths of acceleration lane and/or taper for the use of a MERGE sign are, respectively, 80 and 200 m. Where the length of acceleration lane and/or taper is less than the minimum or greater than the maximum lengths specified, MERGE signs must not be used.

illustrate pavement marking visibility under different conditions, including daytime, nighttime without PRPMs, and nighttime with PRPMs.

It was also observed that, where present, guide rails or concrete barriers on the median are not visible due to the lack of delineation along these devices.



Figure 25: Pavement markings during daytime condition



Figure 26: Pavement markings during nighttime condition (without PRPMs)



Figure 27: Pavement markings during nighttime condition (with PRPMs)

#### 6. Illumination Review

The primary objective of illumination is to increase safety by providing drivers with improved nighttime visibility of roadway conditions and potential hazards. Although nighttime collision proportions were not found to be significantly higher than provincial or municipal averages, the review of the need for illumination was part of the scope of this study, as requested by the City.

It should be noted that design choices that were made during the design phase were intimately linked to approvals. Reference materials note that, "The sole reason for making design changes was to reduce environmental impacts." The Valley section of the Parkway traverses the Niagara Escarpment, a UNESCO World Biosphere Reserve, designated for its unique landform characteristics and the presence of a provincial land use plan to guide development in its area. Because of this unique area, and because of the costs associated with building a roadway on the escarpment, the City identified several design refinements that included restricting illumination to intersections and on/off ramps.<sup>20</sup>

In order to determine whether additional illumination should be considered for installation within the study area, the Transportation Association of Canada (TAC) Roadway Lighting Guide was used, as well as the Ministry of Transportation Ontario (MTO) Policy for Highway Illumination. These policies are based on an analytical approach where several factors have been incorporated. The determination of the need for illumination is performed through the use of warrants which consider road geometry, operations, environmental, and collision factors. For each factor, a rating between 1 and 5 is assigned depending on the conditions encountered. The higher the rating, the greater the hazard and the more critical is the need for illumination. A weight is also attributed to each factor,

<sup>19</sup> Red Hill Valley Impact and Design Process, City of Hamilton, Page 3

<sup>&</sup>lt;sup>20</sup> Red Hill Valley Project Public Consultation Report, March 2003, Lura Consulting, Page 136

indicating its relative importance. When factors vary within the portion of roadway for which the warrant is being undertaken, the worst case rating is recommended for the entire segment.

The warrant forms used to determine the need for illumination in the sections of the RHVP between the Lincoln Alexander Parkway and Greenhill Avenue, and between Greenhill Avenue and the Queen Elizabeth Way, are provided in **Appendix B**. This segmentation was chosen for the following reasons: it is approximately the midpoint of the study area, as well as the study limit for the study conducted in 2013; and some notable changes in characteristics occur, including the beginning of a third lane in the southbound direction just south of Greenhill, the presence of a grade between Mud Street and Greenhill Avenue, and generally smaller curve radii in the vicinity of King Street and Queenston Road (north of Greenhill Avenue).

The results of the illumination warrant analysis are summarized in Table 9

**Table 9: Illumination Warrant Analysis Results** 

| Section                                             | Varranting Condition | Result   | Warranted |
|-----------------------------------------------------|----------------------|----------|-----------|
| Line also Alexander Deuleure de Consultill Assesses |                      | TAC: 57  | V         |
| Lincoln Alexander Parkway to Greenhill Avenue       | TAC: 60              | MTO: 117 | Yes       |
| Creambill Avanua to Overan Flimbath Way             | MTO: 80              | TAC: 61  | Vos       |
| Greenhill Avenue to Queen Elizabeth Way             |                      | MTO: 117 | Yes       |

Legend: (TAC) MTO

According to both TAC and MTO policies, illumination is warranted on the RHVP. However, the MTO warrant provides additional criteria based on the Benefit/Cost ratio of providing illumination. Warranting thresholds are summarized in **Table 10**.

Table 10: MTO Benefit/Cost Warranting Thresholds

| Benefit/Cost Ratio               | Warrant                   |                       |  |  |
|----------------------------------|---------------------------|-----------------------|--|--|
| Greater than 2.0                 | Lighting is warranted     |                       |  |  |
| Greater than 1.0                 | Lighting is optional      | Lighting is warranted |  |  |
| Equal or less than 1.0           | Lighting is not warranted | Lighting is optional  |  |  |
| Percentage points from the Forms | 50%                       | 100%                  |  |  |

The resulting percentage points from the MTO warrant is 146% for both sections north and south of Greenhill Avenue. In this case, illumination will be warranted if the Benefit/Cost ratio of providing it is greater than 1.0, and optional if otherwise. The Benefit/Cost of providing illumination will be discussed in **Section 7.1.3**.

Other factors, however, should be taken into account in the decision to provide illumination along the RHVP mainline, including the context of the surrounding roadway network. For example, while illumination may improve visibility at night, it may also create the situation where drivers' eyes must adjust back to darkness when leaving the illumination portion of the roadway. Currently, the Lincoln Alexander Parkway present only partial interchange illumination, and, considering the approval conditions previously mentioned, installing illumination could create a situation where drivers enter a short illuminated section, followed by a non-illuminated section, and finally back to an illuminated

section. Another consideration is roadside safety. Luminaires must be installed in safe locations that recognize their potential hazard to vehicles. The location and placement of luminaires must also take into account the need for maintenance, meaning they must be accessible to workers.

#### 7. Determination of Potential Countermeasures

This section summarizes potential countermeasures for the study area based on our findings of collision analysis and field investigation. The results of the collision analysis identified:

- A high proportion of wet surface collisions highly concentrated in the vicinity of the King Street and Queenston Road interchanges, where horizontal curves are present; with high speeds suspected to be a major contributing factor; and
- Median related collisions under the same conditions described above.

Based on these results, the following sections provide potential countermeasures for the study area. Potential countermeasures are provided in two parts. The first part covers potential countermeasures that are generally intended to reduce number of collisions. The second part covers mitigation measures that are expected to reduce severity of collisions.

#### 7.1 Potential Countermeasures for Reduction of Overall Collisions

11 eed M eme

111 eed or eme d eed Feedb

The findings from the collision review indicate that excessive speeds are likely a major contributing factor to collisions in the study area. Targeted police enforcement of areas with known high collision frequency can be an effective means to reduce speeds and, by consequence, collisions. There is no CMF for this countermeasure, and costs are expected to be included in regular police activities. However, there is a possibility that this measure is not operationally feasible due to a lack of safe locations to park patrol vehicles near the high-collision areas. This countermeasure should be discussed with Hamilton Police Service.

Changeable speed feedback signs for individual drivers are intended to influence driver behaviour and reduce excessive speeds. The signs consist of boards connected to speed measuring devices that display text such as "Your speed is XX km/h" or "You are driving too fast". This countermeasure should be implemented in conjunction with speed enforcement, for two main reasons; first, it would provide individual feedback to most drivers 24 hours per day, 7 days per week, which police enforcement cannot achieve; and second, compliance with speed limit as a result of speed feedback signs alone may be reduced over time if drivers do not perceive that speeds are being enforced (especially considering the commuter nature of the RHVP).

The CMF for this countermeasure is 0.54 with an adjusted standard error of 0.17<sup>21</sup> (meaning it can range from 0.2 to 0.88 with a 95% confidence interval), and the construction cost is \$12,500 per site for a service life of 10 years.

#### 112 ver ed eed L m

Oversized speed limit signs (90x120 cm) provide improved visibility and impact on drivers. Larger speed limit signs are reported to be more effective when used with increased police enforcement.<sup>22</sup>

There is no CMF available for this countermeasure, and installation costs is \$500 per sign.

#### 12 veme Fr o

#### 121 er orm Fr o e

Pavement friction plays a vital role in keeping vehicles on the road by enabling the drivers to control/manoeuver the vehicle in a safe manner (in both the longitudinal and lateral directions). Several methods and devices are available for measuring pavement frictional characteristics. Pavement surface texture is influenced by many factors, including aggregate type and size, mixture proportions, and texture orientation and details. Texture is defined by two levels: microtexture and macrotexture. Currently, there are no direct means for measuring microtexture in the field. However because microtexture is related to low slip speed friction, it can be estimated using a surrogate device. Macrotexture is characterized by the mean texture depth and the mean profile depth; several types of equipment are available for measuring these indices.

Because of the high proportion of wet surface condition and SMV collisions, the City could consider undertaking pavement friction testing on the asphalt to get a baseline friction coefficient for which to compare to design specifications. It is important to perform the tests under normal conditions as well as under typical wet pavement conditions encountered on the RHVP in order to simulate, as best as possible, the conditions under which collisions occur. For example, if more water accumulates on the pavement under typical conditions than under normal testing conditions, the tests may result satisfactory, when in reality friction may be reduced. Tests should also be performed near locations with the highest frequencies of wet surface collisions, especially curves.

The estimated costs to undertake these are approximately \$40,000. Based on the results, the City may be in a better position to determine if further action is required.

#### 1 | m o

The primary objective of illumination is to increase safety by providing drivers with improved nighttime visibility of roadway conditions and potential hazards. As discussed in **Section 6**, continuous illumination along the RHVP is either warranted or optional, although restrictions from the

<sup>&</sup>lt;sup>21</sup> http://www.cmfclearinghouse.org/detail.cfm?facid=78

<sup>&</sup>lt;sup>22</sup> Handbook of Speed Management Techniques. Texas Transportation Institute. September, 1998.

approvals phase may result in an undesired condition where illuminated and non-illuminated sections alternate, forcing drivers' eyes to adjust between light and darkness.

The CMF for this countermeasure is 0.97<sup>23</sup>, and expected construction costs are \$100,000 / centreline km over a 20-year service life.

l deeo

1 1 er e e d Brd el e

The purpose for the 'Slippery When Wet' sign is to advise drivers that the surface of the roadway has a significantly reduced wet weather skid resistance. Competent drivers are aware that the friction of the road surface is reduced in wet weather; therefore this sign is reserved for use where the skid resistance of the road is reduced to an unexpectedly low level. OTM Book 6 guidelines indicate that these signs should be installed at locations where field investigations determine that the pavement has a significantly reduced wet weather skid resistance, or where for no identifiable reason more than one third of all collisions on a given section of road are occurring on wet pavement (among other criteria). As found during the collision review, more than half of all collisions are occurring on wet pavement, and approximately 70 to 80% of all collisions in the vicinity of the King Street and Queenston Road interchanges involve wet surface conditions. The City should consider installing Wc-105 SLIPPERY WHEN WET signs, combined with Wc-5t SLIPPERY WHEN WET tab sign along the study area, in intervals of 1 km or less (in accordance with OTM Book 6 guidelines for urban areas). Additionally, the City should replace the existing Wc-105 signs located at the two bridges (refer to Section 5.4.1) with WC-23 BRIDGE/ROAD ICES signs.

There is no specific CMF for the installation of 'Slippery When Wet' signs. Installation cost is \$500 per sign resulting in a total cost of \$8,000. If the City would like to place additional emphasis on the area near the King Street and Queenston Road interchanges, consideration may be given to installing rain activated flashing beacons on the 'Slippery When Wet' signs within this section. This would raise installation costs to approximately \$128,000 (considering 4 solar powered flashing beacons), however it is expected to draw driver's attention and increase their awareness about the wet surface conditions in the critical area.

Another alternative is to display messages related to road and environment conditions using Dynamic Message Signs (DMS) that can be implemented as part of the City's planned Advanced Traffic Management System (ATMS) project, consisting of an Intelligent Transportation System (ITS) Freeway Traffic Management System (FTMS) inclusive of the entire Linc and RHVP freeway system from Hwy 403 to the QEW. Figure 28 provides examples of DMSs used on Ontario Highways under MTO's jurisdiction.<sup>24</sup>

<sup>23</sup> MTO Safety Analyst tool

<sup>&</sup>lt;sup>24</sup> http://www.mto.gov.on.ca/english/traveller/trip/compass-ftms.shtml#vms

Figure 28: Examples of Dynamic Message Signs

#### 7.1.4.2 'Merge' Signs and Vegetation at On-Ramps/Merging Areas

As highlighted in **Section 5.4.3**, two RHVP on-ramps require the use of MERGE warning signs (Wa-16), however they are not present at these locations. The City should consider installing these signs at the Queenston Road E/W-N and Barton Street E/W-S on-ramps to increase driver awareness of the possibility of merging vehicles and potentially reduce evasive manoeuvres that can lead to SMV and sideswipe collisions.

Some locations were identified to have MERGE signs installed, even though not required by OTM Book 6. However, the City may opt not to remove these signs, given the overall geometry of the RHVP and its merging areas, as well as the presence of vegetation between some on-ramps and the adjacent mainline, merging traffic conditions may not be obvious to some drivers.

Finally, as discussed in Section 5.2.2, some on-ramps present vegetation that may restrict the ability for drivers on the mainline to see vehicles approaching from the ramp. The City should consider trimming the vegetation in these areas low enough so approaching vehicles are visible.

The estimated cost to install the two 'Merge' signs is \$1,000; vegetation trimming is expected to be undertaken as part of regular maintenance activities, therefore no additional cost is associated.

### 7.1.4.3 Permanent Recessed Pavement Markers (PRPMs)

PRPMs are delineation devices that are often used to improve preview distances and guidance for drivers in inclement weather and low-light conditions. Given the wet surface and rainy weather trend in collisions along the RHVP, combined with the curvilinear geometry of the roadway, PRPMs have the potential to positively affect the collision experience on the roadway as well as increase driver

BOOL

security. This countermeasure had been recommended in the previous study, conducted in 2013, and was implemented in the southern section of the study area. Installing PRPMs in the northern section would also provide consistency throughout the entire length of the RHVP and improve night-time visibility for drivers, since no illumination is present.

The CMF for this countermeasure is 0.67 for nighttime collisions<sup>25</sup>, and the estimated installation cost is \$20,000 per kilometre.<sup>26</sup>

# 7.2 Potential Countermeasures for Mitigating Median Related Collisions

#### 7.2.1 Median Barrier

#### 7.2.1.1 Evaluation of the Benefits and Drawbacks of Providing a Median Barrier

Median barriers are very effective in preventing median crossover collisions, which are generally fatal or high severity collisions. Median barriers do not eliminate the collisions. However, they are very effective in mitigating outcomes of collisions by reducing severity of collisions. Median barriers generally result in an increase in overall collisions, which are generally PDO. Therefore, these barriers should be evaluated for the potential benefit as compared to drawbacks.

The collision review revealed that median crossover collisions correspond to 13% of all median related collisions in the study area, including 1 fatal, 9 injury, and 7 PDO collisions within 7.5 years (2008 to July-2015), amounting to a societal cost of approximately \$ 2.17 M based on current MTO's societal costs.<sup>27</sup>

The benefits and drawbacks of providing a median barrier along the entire section of the RHVP within the study area were evaluated. The prevailing guidance in Ontario with respect to roadside barriers is the MTO Roadside Safety Manual (RSM). The RSM provides a median barrier warrant guide for divided highways, shown in **Figure 29**. The assessment is based on median width, (measured between edges of driving lanes) and predicted 10 years traffic volume (AADT).<sup>28</sup>

<sup>28</sup> MTO's Roadside Safety Manual, Figure 2.10.1

B000558

<sup>&</sup>lt;sup>25</sup> NCHRP Report 518 - Safety Evaluation of Permanent Raised Pavement Markers. Transportation Research Board. 2004.

<sup>&</sup>lt;sup>26</sup> MTO SafetyAnalyst tool.

<sup>&</sup>lt;sup>27</sup> Societal cost of a fatal collision is \$1,582,000, an injury collision is \$59,000 and a PDO collision is \$8,000

Figure 29: Median Barrier Warrant Guide for Divided Highways

According to the figure, median barriers are only warranted for highways with AADTs of 20,000 and higher and median widths less than 10.0 metres. For median widths between 10.0 metres and 15.0 metres, median barriers are optional and for median widths greater than 15.0 metres, median barriers are deemed "not required".

The guidance indicates that, within the optional range, the barriers should be only installed in special circumstances such as for highways with identified median crossover collision problem, where an identified geometric deficiency cannot be readily corrected, or for continuity with adjacent sections.<sup>29</sup>

The TAC Geometric Design Guide for Canadian Roadways (TAC) also provides a similar median barrier warrant guide. It also suggests conducting benefit-cost analysis for implementing median barriers.

CIMA conducted warrants for implementing median barriers within the study area by utilizing the MTO's median warrant guide demonstrated in **Figure 29** and utilizing the following data:

♣ AADT – 59,123 based on year 2011;

CIMA+ // Partners in excellence

<sup>&</sup>lt;sup>29</sup> Roadside Safety Manual, Section 2.10.1

- Median Width 15.0 m to 22.7 m (measured using aerial photography); and
- \* The history of median cross-over collisions.

Based on the AADT and the median width, the RHVP is in the area "not required". However, based on a history of median crossover collisions, the study area should be considered for providing a median barrier. TAC suggests conducting a benefit-cost analysis to the median barrier problem.<sup>30</sup>

CIMA conducted a detailed analysis to determine various feasible types of median barrier systems for the study area and also performed a cost-benefit analysis to select the best alternative for the study area.

The selection of best type of median barrier system within the study area was undertaken in the following steps:

- Determination of feasible barrier types for the study area;
- Development of alternatives; and
- Selection of the best alternative based on cost-effective analysis.

#### 7.2.1.2 Determination of Feasibility of Barrier Types for the Study Area

CIMA conducted an analysis of various types of prevailing median barrier technologies in Canada based on MTO's Roadside Safety Manual and AASHTO Roadside Design Guide to determine feasible barrier types for the RHVP. The results of the analysis along with the characteristics of each barrier type that makes it suitable or unsuitable for the RHVP are included in **Table 11**.

B000558

<sup>30</sup> TAC Geometric Design Guide for Canadian Roadways, Section 3.1.6.3

Table 11: Analysis for the Feasibility of Various Barrier Systems for the Linc

| Type of Median Barrier                               | Relevant Characteristics                                                                                                                                                                                                                                                                     | Feasibility for the RHVP                                                     |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 6 Cable (Wood Post)                                  | Not approved for use on high speed<br>facilities                                                                                                                                                                                                                                             | Not feasible for the RHVP due to high speed                                  |
| 6 Cable (Steel Post)                                 | <ul> <li>Recommended for AADT &lt; 20,000</li> <li>Ideal for median width greater than 9 m</li> </ul>                                                                                                                                                                                        | Not feasible for the RHVP due to high AADT                                   |
| Median Box Beam Barrier                              | <ul> <li>Restricted to facilities with posted speeds<br/>less than 80 km/h</li> <li>Recommended for AADT &lt; 30,000</li> </ul>                                                                                                                                                              | Not feasible for the RHVP due<br>to high AADT and speed                      |
| Median Steel Beam Guide Rail<br>with Channel         | <ul> <li>Recommended for AADT &gt; 20,000</li> <li>Can be installed in medians greater than 9.0</li> <li>m</li> </ul>                                                                                                                                                                        | Feasible for the RHVP                                                        |
| Standard Concrete Barrier and<br>Ontario "Tall Wall" | <ul> <li>No curbs, gutters or ditches allowed between the barrier and the driving lanes</li> <li>Area directly in front of barrier must be paved</li> <li>Should not be located more than 4.0 metres from the edge of the driving lane (maximum width of median to be 9.0 metres)</li> </ul> | Not feasible for the RHVP due<br>to a median width larger than<br>9.0 metres |
| High-Tension Cable Barrier*                          | <ul> <li>2011 AADT range – 25,820 to 46, 200</li> <li>Posted Speed – 110 km/h</li> </ul>                                                                                                                                                                                                     | Feasible for the RHVP                                                        |

<sup>\*</sup>Based on Successful Alberta experience in addressing cross median collisions by using the High-Tension Cable Barrier system on Highway 2 between Airdrie and Red Deer

As can be seen in **Table 11**, Median Steel Beam Guide Rail, and High-Tension Cable Barriers are feasible options for providing a median barrier for the RHVP. It should be noted that all kinds of barrier systems can be transitioned from one type to another by using standard methods. The guidance is available in MTO's Roadside Manual and AASHTO Roadside Design Guide. The appropriate types of transitions should be determined at the detailed design stage.

Based on the feasible barrier options detailed above, various alternatives available for providing a median barrier on the RHVP are as follows:

# Alternative 1: Standard Steel Beam Guide Rail with Channel System on Both Sides of the Median

Provide Standard Steel Beam Guide Rail with Channel systems on both sides of the median. It should be noted that for medians, steel beam guide rails are provided with channel elements to increase the stiffness of the installation<sup>31</sup>. An example Standard Steel Beam Guide Rail with Channel System installed on a median on Highway 403 is demonstrated in Figure 30.

CIMA+ // Partners in excellence

<sup>31</sup> Section 4.3.5, MTO's Roadside Safety Manual



Figure 30: Example of standard steel beam guide rail with channel

#### Alternative 2: High Tension Cable Barrier on Both Sides of the Median

Provide High-Tension Cable Barrier on both sides of the median. An example of High Tension Cable Barrier installed on both sides of a median location on Highway 2 in Alberta is demonstrated in Figure 31.



Figure 31: Example of high tension cable barrier

Estimated costs for these alternatives are provided in Appendix C.

#### 22 de Lev d re me

As highlighted in **Section 5.1**, "fishtail" leaving end treatments at some guide rails protecting bridge structures are located within the clear zone of the opposite direction of traffic, and the approaching end treatment in the opposite direction does not provide the required length of need, exposing vehicle occupants to a spearing hazard. The City should consider replacing the existing extruder and "fishtail" end treatments with CAT-350 attenuators at bridge structures, which is the recommended end treatment according to the RSM. The City may also choose similar options such as the SMART crash cushion (OPSD 923.483). The estimated cost is \$7,000 per unit.



Figure 32: Steel beam protection of structures located on the median<sup>32</sup>

Additionally, as identified in **Section 5.4.2**, **Table 7**, several guide rail approach end treatments were found to have missing, damaged, or obscured OBJECT MARKER signs (Wa-33). These signs should be installed, replaced, or made visible by trimming the vegetation, respectively. The estimated cost is approximately \$500 per sign.

# 8. Benefit-Cost Analysis

In order to assist in determining the effectiveness of a countermeasure, collision modification factors (CMFs) were utilized where available. CMFs were examined from a number of sources including the HSM, the FHWA CMF Clearinghouse<sup>33</sup>. The CMF of a countermeasure can assist in determining safety benefits of the countermeasure over the analysis period by calculating the expected number of collisions reduced.

The Benefit-Gost (B/C) ratio is the ratio of the present value of the safety benefit of a given countermeasure calculated for its service life to the present value of the cost of the countermeasure. A B/C ratio of greater than 1.0 represents an economically efficient countermeasure. In this criterion,

CIMA+ // Partners in excellence

<sup>&</sup>lt;sup>32</sup> MTO's Roadside Safety Manual, Figure 2.8.6. OPSD number displayed in the Figure is outdated. Current applicable version is OPSD 922.330.

<sup>33</sup> http://www.cmfclearinghouse.org/

the monetary value of the collisions reduced as a result of implementation of a countermeasure is considered as the benefit of the countermeasure. For the purposes of calculating the societal costs of collisions, MTO costs were utilized. The benefit-cost analysis is detailed in the following sections.

#### 8.1 Median Barrier

The benefit-cost analysis of median barriers was conducted in two steps. In the first step the analysis was conducted to compare different alternatives to select the possible alternative. In the second step, the analysis was conducted to obtain the overall B/C of the preferred alternative.

In order to select the best possible alternative of installing a median barrier from the available alternatives detailed in Section 7.2.1.2, an incremental benefit-cost analysis was conducted. Barrier systems have an assumed service life of 30 years. Median barriers generally eliminate all cross-over outcomes of collisions, including cross-over fatal collisions. However, median barriers tend to increase overall number of collisions, primarily PDO collisions.

The cost-effective analysis to compare both alternatives was conducted using a benefit-cost ratio (B/C) and on incremental basis, to realize the greatest benefit at the least cost. In this methodology, the alternatives are first ordered from lowest to highest cost. The incremental benefits of the second over the first are calculated by dividing the incremental costs of the second over the first. If the ratio is greater than 1, then alternative 2 is preferred. If the ratio is less than 1 then alternative 1 is superior alternative. The better of these is then compared with the next most costly alternative and so on. The following steps were performed for calculating B/C:

- Estimate life cycle cost of each alternative including capital cost and operating and maintenance cost. The capital cost includes the purchase price, installation cost, and the activities that would not take place otherwise, such as paving, modifications to drainage, etc.)Operating and maintenance cost includes recurring cost of operating and maintaining the system during its useful life:
- ◆ Estimate the societal cost<sup>34</sup> of collision for each year that will be prevented by installing the barrier system as estimated over the service life of the barrier system. This was considered as benefit;
- Estimate the societal cost of less severe collisions for each year involving the barrier system, after the barrier system has been put into place. This was considered as negative benefit; and
- Calculate B/C by dividing the present value of the societal benefits by the present value of the life cycle cost.

The methodology with detailed assumptions, calculations and results of the analysis are provided in Appendix A. The results of the analysis are presented in Table 12 and Table 13.

The life cycle cost of each alternative, as shown in Table 12, includes capital cost and operating and maintenance cost. Further details are available in Appendix A. It should be noted that alternatives in Table 12 are ordered from lowest to highest life-cycle cost for conducting incremental benefit cost

<sup>&</sup>lt;sup>34</sup> Societal costs of collisions used were based on MTO's current costs of collisions (\$ 1,582,000 for a fatal collision, \$ 59,000 for an injury collision, and \$ 8,000 for a PDO collision)

analysis. The Monetary Benefit of implementing each alternative, as shown in Table 13, includes the estimate of societal cost of collisions that will be reduced by installing the barrier system as estimated over the service life of the barrier system.

Table 12: Costs and benefits of median barrier alternatives

| Alternative                               | ve Life Cycle Cost |               |
|-------------------------------------------|--------------------|---------------|
| Do-Nothing                                | \$0                | \$0           |
| Alternative 2: High Tension Cable Barrier | \$2,528,400        | \$ 13,290,077 |
| Alternative 1: Steel Beam Guide Rail      | \$3,088,500        | \$ 11,259,159 |

Table 13: Results of cost-effective analysis

| Comparison                      | Incremental Cost | Incremental Benefit | Incremental | B/C | Preferred Option |
|---------------------------------|------------------|---------------------|-------------|-----|------------------|
| Alternative 1 vs. Do-Nothing    | \$2,528,400      | \$ 13,290,077       | 5.26        |     | Alternative 1    |
| Alternative 2 vs. Alternative 1 | \$560,100        | -\$2,030,917        | -3.63       |     | Alternative 1    |

As demonstrated in **Table 13**, the only positive increase of more than 1 in incremental B/C is for Alternative 2. Therefore, Alternative 2 consisting of High-Tension Cable Barrier on both sides of the median is the preferred alternative.

The overall B/C of Alternative 2 consisting of High-Tension Cable Barrier on both sides of the median is included in **Table 14**.

Table 14: B/C for High-Tension Cable Barrier

| Countermeasure               | Target<br>Collisions | Severity | Expected<br>Collisions<br>Before | Expected<br>Crash<br>Reduction | Benefit (\$) | Cost (\$) | Overall<br>B/C |
|------------------------------|----------------------|----------|----------------------------------|--------------------------------|--------------|-----------|----------------|
| Install Median               | Median               | Fatal    | 6.22                             | 4.35                           |              |           |                |
| Barrier System <sup>35</sup> | Related              | Injury   | 161.69                           | 126.24                         | 13,290,077   | 2,528,400 | 5.26           |
|                              | Collisions           | PDO      | 205.22                           | -130.59                        |              |           |                |

As can be seen in **Table 14**, Alternative 2 is expected to provide a B/C of 5.26 and is a cost-effective option.

#### 8.2 Other Countermeasures

The results of the B/C Analysis for other countermeasures are provided in **Table 15**. The detailed calculations are included in Appendix C.

<sup>&</sup>lt;sup>35</sup> Reduction in collisions was estimated based on the proportions of severity of collisions involving High Tension Cable Barriers as identified in the study the results of the study "High Tension Cable Barrier Performance Evaluation Study for Highway 2 in Alberta"

| Countermeasure                                                           | Target<br>Collisions<br>(Severity) | CMF      | Expected<br>Collisions<br>Before | Expected<br>Crash<br>Reduction <sup>36</sup> | Benefit<br>(\$) | Cost<br>(Life Cycle)    | B/C              |
|--------------------------------------------------------------------------|------------------------------------|----------|----------------------------------|----------------------------------------------|-----------------|-------------------------|------------------|
| Speed<br>Enforcement &<br>Feedback Signs                                 | All<br>(All)                       | 0.88     | 321.73                           | 38.61                                        | 1,178 M         | \$100,000<br>(10 years) | 11.78            |
| Illumination                                                             | Nighttime<br>(All)                 | 0.97     | 1,728.47                         | 51.85                                        | 2,247 M         | \$810,000<br>(20 years) | 2.77             |
| Permanent<br>Recessed<br>Pavement<br>Markers                             | Nighttime<br>(All)                 | 0.67     | 68.65                            | 22.66                                        | 1,236 M         | \$98,800<br>(5 years)   | 12.51            |
| Oversized<br>Speed Limit<br>Signs                                        |                                    |          |                                  | CMF Not Ava                                  | illable         |                         |                  |
| Slippery When Wet Signs Only                                             | en se 15 e                         | en an an | e aconescentian co               | CMF Not Ava                                  | ilable          | e menden on the t       |                  |
| Slippery When<br>Wet Signs with<br>Rain Activated<br>Flashing<br>Beacons |                                    |          |                                  | CMF Not Ava                                  | ilable          | 1 0 00 0 00 00<br>4     | E or or a second |
| 'Merge' Signs                                                            |                                    |          |                                  | CMF Not Ava                                  | ilable          |                         |                  |
| Trim Vegetation<br>Near On-Ramps                                         |                                    |          |                                  | CMF Not Ava                                  | ilable          |                         |                  |
| Guide Rail End<br>Treatments                                             |                                    |          |                                  | CMF Not Ava                                  | ilable          |                         |                  |

## 9. Conclusion

CIMA was retained by the City of Hamilton to evaluate safety and operational performance of the RHVP and to determine any mitigation measures to improve parkway's performance and reduce number and severity of collisions with special emphasis on median related collisions. CIMA conducted a thorough investigation of the RHVP including investigation of road-related factors, roadside safety assessment, and evaluated the necessity of providing a median barrier and other countermeasures to enhance the safety of road users. After completing the above review, a list of potential countermeasures was developed and a benefit-cost analysis was conducted to determine the cost effectiveness of countermeasures. The following sections provide options that should be given consideration for implementation by the City and a summary table with construction cost and suggested timing for installation.

# 9.1 Options for Consideration

The following improvements should be considered for implementation on the RHVP.

<sup>36</sup> Numbers shown are up to two decimals only. Dollar amounts shown may look slightly off due to high societal costs.

#### 9.1.1 Install Speed Feedback Signs with Enforcement

The installation of two sets of two speed feedback signs should be considered for the RHVP (two sets in each direction, one sign on each side of the road). The recommended locations for the installation of these signs are:

- Northbound direction:
  - Upstream of the curve between Greenhill Avenue and King Street; and
  - Between the King Street on-ramp and the Queenston Road off-ramp.
- Southbound direction:
  - Upstream of the curve between Barton Street and Queenston Road; and
  - Between the Queenston Road on-ramp and the King Street off-ramp.

The purpose of these signs is to influence drivers to reduce speeds and, consequently, collision frequency—and –severity, especially in the vicinity of the King—Street and Queenston—Road interchanges. The estimated cost of this countermeasure is \$100,000, providing a B/C of 11.78.

It should be noted, however, that the presence of acceleration/deceleration lanes where the signs would be located may reduce their conspicuity for drivers on the mainline right lane. As an alternative, the City may consider to install overhead speed feedback signs.

For increased effectiveness, it is important that the installation of the speed feedback signs be accompanied by regular speed enforcement by Hamilton Police.

The City may also consider investigating the technical feasibility of integrating speed feedback messages (either individual or collective) with the planned ATMS project (refer to **Section 7.1.4.1**).

#### 9.1.2 Install Oversized Speed Limit Signs

The purpose of oversized speed limit signs (90x120 cm) is to influence drivers to reduce speeds and, consequently, collision frequency and severity. A benefit-cost analysis for this countermeasure was not conducted as a CMF for this countermeasure is not available. The estimated cost of this countermeasure is \$7,000 (14 signs at \$500 per sign).

#### 9.1.3 Conduct Pavement Friction Testing

In order to determine whether low pavement friction may be contributing to collisions (especially wet surface), the City should consider conducting pavement friction tests under normal conditions as well as under typical wet pavement conditions encountered on the RHVP. Special focus should be given to the curves near the King Street and Queenston Road interchanges (Figure 33). The estimated cost to conduct friction testing is \$40,000. Depending on the test results, the City will be able to determine if further action is required.

Install Permanent Recessed Pavement Markers (PRPMs)

As an alternative to illumination, the City may consider installing PRPMs in the northern section of the RHVP (i.e. north of Greenhill Avenue). The installation of PRPMs is expected to reduce collisions under low-visibility conditions (nighttime and inclement weather), as well as provide consistency throughout the entire length of the RHVP (PRPMs are already present in the southern section, as a result of a previous study conducted in 2013). The estimated cost of installing PRPMs in the north section is \$247,000, providing a B/C of 5.

#### 9.1.5 Install Special Oversize Curve Warning Signs

In order to increase drivers' awareness of the curves near the King Street and Queenston Road interchanges, where a high concentration of collisions was found, the City should consider installing special oversize curve warning signs (900x900 mm).<sup>37</sup> A benefit-cost analysis for this countermeasure was not conducted as a CMF for this countermeasure is not available. The estimated cost of this countermeasure is \$8,000 (16 signs at \$500 per sign).

# 9.1.6 Install 'Slippery When Wet' and 'Bridge Ices' Signs

The City should consider installing Wc-105 SLIPPERY WHEN WET signs, combined with Wc-5t SLIPPERY WHEN WET tab sign along the study area, in intervals of 1 km or less, in accordance with OTM Book 6 guidelines and to warn drivers of the increased risk of collisions under wet surface conditions. To further highlight the hazard, the signs in the vicinity of the King Street and Queenston Road interchanges may be supplemented with flashing beacons activated by a rain sensor. A benefit-cost analysis for this countermeasure was not conducted as a CMF for this countermeasure is not available. The estimated cost of this countermeasure is \$8,000 if only signs are installed (16 signs at \$500 per sign), or \$128,000 if rain activated flashing beacons are added to 4 signs in the critical section. An alternative, however, is to display 'slippery when wet' messages via the City's planned ATMS project (refer to **Section 7.1.4.1**), which would absorb at least part of this costs.

Additionally, the existing 'Slippery When Wet' signs installed at the two bridges (between Mud Street and Greenhill Avenue, and between Barton Street and the north end of the study area) should be replaced with WC-23 BRIDGE/ROAD ICES signs (MUTCD for Canada), at an estimated cost of

<sup>&</sup>lt;sup>37</sup> This sign size is not available in the current version of OTM Book 6, however it will be included in the updated version.

\$2,000 (4 signs at \$500 per sign). A benefit-cost analysis for this countermeasure was not conducted as a CMF for this countermeasure is not available.

#### 9.1.7 Install Merge' Signs and Trim Vegetation at On-Ramps/Merging Areas

As discussed in Section 7.1.4.2, Wa-16 MERGE warning signs should be considered for installation at the Queenston Road E/W-N and Barton Street E/W-S on-ramps to increase driver awareness of the possibility of merging vehicles and potentially reduce evasive manoeuvres that can lead to SMV and sideswipe collisions. A benefit-cost analysis for this countermeasure was not conducted as a CMF for this countermeasure is not available. The estimated cost of this countermeasure is \$1,000 (2 signs at \$500 per sign).

Additionally, vegetation at the areas between the mainline and some on-ramps should be regularly trimmed and maintained low enough so vehicles approaching from the ramp are visible to drivers on the mainline. This countermeasure is expected to be undertaken as part of regular maintenance activities, therefore no additional cost is associated to it.

#### 9.1.8 Upgrade Guide Rail End Treatments and Improve Object Marker Signs

The City should consider replacing the existing extruder and "fishtail" end treatments of guide rails protecting the bridge structures at Greenhill Avenue, Mount Albion Road, King Street, Queenston Road, and the railway overpass south of King Street, with CAT-350 attenuators, SMART crash cushions or other similar alternatives that comply with the MTO Roadside Safety Manual recommended configuration.

This countermeasure would not apply if and/or where a continuous median barrier is installed. There is no CMF available for upgrading these end treatments, and the estimated cost is \$70,000 (2 units x 5 locations at \$7,000 per unit).

Additionally, the OBJECT MARKER signs (Wa-33) identified in **Section 5.4.2**, **Table 7** as being missing or damaged should be installed or replaced, respectively. The estimated cost is \$3,500 (7 signs at \$500 per sign). The signs identified as being obscured by vegetation should be made visible by trimming the vegetation. The cost is expected to be included in the City's regular maintenance activities.

# 9.1.9 Install High - Tension Cable Median Barrier System

Two median barrier system alternatives for the RHVP were evaluated. The preferred alternative for the RHVP is High-Tension Cable Median Barrier System with present value cost (including the cost of maintenance for 30 years) of \$ 2.53 M. The alternative is expected to provide a B/C of 5.26.

It should be noted that the purpose of median barriers is to eliminate median cross-over outcomes of collisions. The installation of a barrier does not necessarily result in fewer collisions, but reduces the severity of collisions. 53% of median related collisions occurred under wet surface condition and a median barrier would come into play after the driver has already lost control. Therefore, it is possible that a reduction of median related collisions will be achieved by addressing speed and wet surface

related collisions. Collisions could be potentially prevented by using other countermeasures as detailed from Section 9.1.1 to 9.1.8. It would be prudent to implement these countermeasures before implementing median barriers and monitoring their safety performance. It is possible that these countermeasures may improve the safety of the RHVP and reduce the potential benefit of providing a median barrier. The B/C calculations for median barrier as detailed above do not consider the effect of those potential countermeasures.

#### 9.1.10 Install Continuous Illumination

The collision review found that the proportion of non-daylight collisions is higher than provincial and municipal averages, and a review of MTO's policy and warrant indicated that continuous illumination is warranted in the study area. The estimated installation cost for providing continuous illumination is \$810,000, providing a B/C of 2.77. However, other factors should be taken into account in the decision to provide illumination along the RHVP mainline, including the context of the surrounding roadway network. For example, while illumination may improve visibility at night, it may also create the situation where drivers' eyes must adjust back to darkness when leaving the illumination portion of the roadway. Currently, the Lincoln Alexander Parkway present only partial interchange illumination, and, considering approval conditions established in the Environmental Assessment, installing illumination could create a situation where, for example, northbound drivers enter a short illuminated section at the south end of the RHVP, followed by a non-illuminated section, and finally back to an illuminated section. For these reasons, illumination is does not appear to be the most adequate solution for the RHVP. All illumination must be assessed in relation to the environmental approval constraints which exist, as well as cost of installation and maintenance implications. Therefore, the decision to provide roadway lighting should be looked at using sound criteria, but illumination decisions must also be done in the context of the surrounding roadway network.

## 9.2 Summary Table

Table 16 summarizes a prioritized list of countermeasures. The priority has been assigned based on ease of implementation, importance, ability to reduce collisions, and ability to reduce severity. The recommended timing for implementation of each of the countermeasure is also provided in the table.

As indicated in Section 9.1.1, the installation of median barrier should only be considered after evaluating the performance of short –term countermeasures.

Table 16: Countermeasures Summary Table

| Countermeasure                                                                               | Construction Cost (\$) | Timeline   | Comment                                                                                                                                        |
|----------------------------------------------------------------------------------------------|------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Conduct Speed Enforcement                                                                    |                        | Ongoing.   |                                                                                                                                                |
| Trim Vegetation at On-Ramps                                                                  |                        | Ongoing    |                                                                                                                                                |
| Install Oversized Speed Limit Signs                                                          | \$7,000                | Short Term |                                                                                                                                                |
| Install 'Slippery When Wet Signs'                                                            | \$8,000                | Short-Term |                                                                                                                                                |
| Install Special Oversize Curve Warning<br>Signs                                              | \$8,000                | Short term | 16 signs in the vicinity of King and Queenston interchanges                                                                                    |
| Supplement 'Slippery When Wet Signs' with Rain Activated Flashing Beacons*                   | \$120,000              | Short Term | 4 signs in the vicinity of King and Queenston interchanges                                                                                     |
| Install 'Merge' signs                                                                        | \$1,000                | Short Term |                                                                                                                                                |
| Install 'Bridge Ices' signs                                                                  | \$2,000                | Short Term |                                                                                                                                                |
| Upgrade median guide rail end<br>treatments                                                  | \$70,000               | Short Term | *                                                                                                                                              |
| Install, replace or trim vegetation<br>obscuring Wa-33 signs at guide rail end<br>treatments | \$3,500                | Short Term |                                                                                                                                                |
| Conduct Pavement Friction Testing                                                            | \$40,000               | Short Term |                                                                                                                                                |
| Install Speed Feedback Signs*                                                                | \$120,000              | Short Term | In conjunction with regular speed enforcement; costs may be higher depending on design                                                         |
| Install PRPMs from Greenhill to QEW                                                          | \$247,000              | Short Term |                                                                                                                                                |
| Short Term Total                                                                             | \$430,300              |            |                                                                                                                                                |
| Install High-Tension Cable Guide Rail                                                        | \$2,528,400            | Long Term  | Consider effect on median related collisions of countermeasures to reduce speed and wet surface collisions                                     |
| Install Continuous Illumination                                                              | \$810,000              | Long Term  | Requires sound evaluation in<br>the context of the surrounding<br>network and environment. An<br>Environmental Assessment will<br>be required. |
| · · Grand Total                                                                              | \$4,395,200            |            |                                                                                                                                                |

<sup>\*</sup> Implementation costs may be different if integrated with the City's planned ATMS project, for which the estimated cost is \$600,000.

מטטטענ

**Appendix A: Over-Representation Analysis** 

# **Over-Representation Analysis**

#### **Theoretical Basis**

The objective of the over-representation analysis is to help identify which collision factors are over-represented. In other words, this analysis is performed to identify the relationship between collisions and the characteristics of a given location. This process assists in identifying contributing factors at each location. If suitable countermeasures are selected to address the contributing factors, the chance of success significantly increases.

The over-representation analysis is based on the Chi-Square statistical test. To determine if a collision contributing factor is over-represented in collisions at a specific location, both the overall characteristics and the individual category must be found to have a computed value of Chi-Square exceeding the critical theoretical value.

#### **Overall Characteristic**

Overall characteristics include the following:

- Collision Classifications;
- Collision Impact Type;
- Day of Week; and
- . Season.

The computed value of Chi-Square is calculated using Equation 1, as shown below:

$$\chi^2 = \sum_{i=1}^n \frac{(o_i - E_i)^2}{E_i}$$

Eq. 1

Where:

Oi is the observed collision frequency;

n is the total number of categories for the characteristic variable; and

 $E_i$  is the expected collision frequency, found by multiplying the total observed collisions at the location with the overall percentage (proportional distribution) of collisions in the category (i.e. A site with 10 observed collisions within a group with 70% as the overall percentage of PDO collisions would have an expected collision frequency of 7).

As shown in Equation 7, the computed Chi-Square value is a measure of discrepancy between the observed and expected collision frequencies. A Chi-Square value of 0 represents no discrepancies between the observed and expected collision frequencies, while a larger value of Chi-Square represents a larger discrepancy.

The computed value of Chi-Square is then compared to the lower and upper theoretical Chi-Square values for the appropriate degrees of freedom and a specified significance level, according to Equation 2.

$$\chi^2_{lower} \leq \chi^2 \leq \chi^2_{upper}$$

Eq. 2

# **Over-Representation Analysis**

If Equation 2 is false, in other words if the value of the computed Chi-Square is less than the lower theoretical value, or greater than the upper theoretical value, the overall characteristic is found to be over-represented, and the analysis is taken to the individual category level.

The specified significance level for this project was chosen to be 0.05, equivalent to a 95% level of significance. The number of degrees of freedom is calculated using Equation 3 below:

$$df = n - 1$$
 Eq. 3

The following table shows the degrees of freedom for each characteristic, along with the corresponding critical theoretical values of Chi-Square for a level of significance of 0.05.

| Collision<br>Characteristics | Number of<br>Variable<br>Categories (n) | Degrees of<br>Freedom (n-1) | Lower<br>Theoretical<br>χ² Value | Upper<br>Theoretical<br>$\chi^2$ Value |
|------------------------------|-----------------------------------------|-----------------------------|----------------------------------|----------------------------------------|
| Collision<br>Classifications | -3                                      |                             | -0.051                           | 7:38                                   |
| Light Condition              | 2                                       | 1                           | 0.001                            | 5.02                                   |
| Environment Condition        | 7                                       | 6                           | 1.24                             | 14.45                                  |
| Surface Condition            | 6                                       | 5                           | 0.83                             | 12.83                                  |
| Collision Impact Types       | 7                                       | 6                           | 1.24                             | 14.45                                  |
| Initial Source of Impact     | 7                                       | 6                           | 1.24                             | 14.45                                  |
| Driver Action                | 5                                       | 4                           | 0.48                             | 11.14                                  |

## **Individual Category**

The individual categories for each overall characteristic considered to conduct the over-representation analysis are presented in the table below.

| Overall Characteristics  | Individual Categories                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------|
| Collision Classification | Fatal, Injury, PDO                                                                        |
| Light Condition          | Daylight, Non-Daylight                                                                    |
| Collision Impact Type    | Angle, Head On, Rear End, Sideswipe, Turning Movement, SMV, Other                         |
| Environment Condition    | Clear, Rain, Snow, Freezing Rain, Strong Wing, Fog / Mist / Smoke / Dust, Drifting Snow   |
| Surface Condition        | Dry, Wet, Loose Snow, Packed Snow, Ice, Slush                                             |
| Collision Impact Type    | SMV, Overtaking, Animal/Peds, Head On, Angle, Rear End, Sideswipe                         |
| Driver Action            | Lost Control, Driving Properly, Speed Too Fast, Following Too Close, Improper Lane Change |

# **Over-Representation Analysis**

Once the overall characteristic has been determined to be over-represented, the individual category is analyzed by calculating the Chi-Square value of each category among the characteristic, using Equation 4.

$$\chi_k^2 = \frac{(O_k - E_k)^2}{E_k} + \frac{(X_k - Y_k)^2}{Y_k}$$

Eq. 4

Where:

$$X_k = T_k - O_k$$
 and  $Y_k = R_k - E_k$ 

 $O_k$  is the observed collision frequency for individual collision characteristic category k;

 $E_k$  is the expected collision frequency for individual collision characteristic category k;

 $T_k$  is the observed total collision frequency at the location; and

 $R_k$  is the expected total collision frequency at the location.

As shown in Equation 4, the computed Chi-Square value is again a measure of the discrepancy between the observed and expected collision frequencies for the collision characteristic category *k*. A Chi-Square value of 0 represents no discrepancies between the observed and expected collision frequencies, while a larger value of Chi-Square represents a larger discrepancy.

The computed value of Chi-Square is then also compared to the lower and upper theoretical Chi-Square values for the appropriate degrees of freedom and a specified significance level, according to Equation 2. If Equation 2 is false, the individual category *k* is found to be over-represented.

The specified significance level remains 0.05 and the number of degrees of freedom is 1, which gives a lower theoretical Chi-Square value of approximately 0.00, and an upper theoretical Chi-Square value of 5.02.

#### Over-Representation Analysis

Results - Light Condition

|                              | 1      | Ontar    | īd           | 12.8  | Hamilton |              |  |  |
|------------------------------|--------|----------|--------------|-------|----------|--------------|--|--|
| Light Condition              | Total  | Davight  | Non-Daylight | Total | Daylight | Non-Daylight |  |  |
| Observed (Oi)                | 473    | 300      | 173          | 473   | 300      | 173          |  |  |
| Other Observed ( k)          |        | 173      | 300          |       | 173      | 300          |  |  |
| Database (Ontario/Hamilton)  | 172639 | 119759   | 52880        | 2927  | 2188     | 739          |  |  |
| Expected (Ei)                | 473    | 328,12   | 144.88       | 473   | 353.58   | 119.42       |  |  |
| Other Expected (Yk)          |        | 144.88   | 328.12       |       | 119.42   | 353.58       |  |  |
| Chi-Value (Oi-Ei) 2/Ei       |        | - 2.41 - | - 5.46       |       | - 8.12 - | 24.04        |  |  |
| Other Chi-Value ( k-Yk) 2/Yi |        | 5.46     | 2.41         | -     | 24.04    | 8.12         |  |  |
| Total Chi-Value              |        | . 7.87   | ,            | _     | 32.16    | 5 .          |  |  |
| Lower Chi-Value              |        | 0.00     | 1            |       | 0.002    | l .          |  |  |
| Upper Chi-Value              |        | 5.02     | ****         | 5.02  |          |              |  |  |
| Total Over-rep               |        | Yes      |              | Yes   |          |              |  |  |
| Category Chi-Values          | - 1    | 7.87     | 7.87         | -     | 32.16    | 32.16        |  |  |
| Category Over-rep            | -10    | - No     | Yes "        | * 1   | No -     | · Yes ·      |  |  |

Results - Environment Condition

| TO THE REAL PROPERTY.        | September 1 | No. of Concession, | in the state of |           | Ontario          |        |                        |                  | 200       |        |        |         | Ham ito          |        |                        | September 1      |
|------------------------------|-------------|--------------------|-----------------|-----------|------------------|--------|------------------------|------------------|-----------|--------|--------|---------|------------------|--------|------------------------|------------------|
| Environment Condition        | Total       | Clear              | Rain            | Snow      | Freezing<br>Rain | Strong | Fog Mist<br>Smoke Dust | Drifting<br>Show | Total     | Clear  | Rain   | Snow    | Freezing<br>Rain | Strong | Fog Mist<br>Smoke Dust | Drifting<br>Snow |
| Observed (Oi)                | 330         | 275                | 16              | 28        | 3                | . 2    | 1                      | 5                | 330-      | 275    | 16     | - 28    | 3                | - 2    | 1                      | 5                |
| Other Observed ( k)          | -           | 55                 | 314             | 302       | 327              | 328    | 329                    | 325              | -         | 55     | 314    | 302     | 327              | 328    | 329                    | 325              |
| Database (Ontario/Hamilton)  | 172306      | 136034             | 18793           | 13046     | 1558             | 398    | . 1492                 | 985              | 3436      | 2708   | 457    | 190     | . 16             | 20     | 32                     | 13               |
| Expected (Ei)-               | 330         | 260.53             | 35.99           | 24.99     | 2.98             | 0.76   | 2.86                   | 1.89             | 330       | 260.08 | 43,89  | 18.25   | 1.54             | 1.92   | 3.07 -                 | 1.25             |
| Other Expected (Yk)          | "           | 69.47              | 294.01          | 305.01    | 327.02           | 329.24 | 327.14 -               | 328.11           | 1 - 1     | 69.92  | 286.11 | 311.75  | 328.46           | 328,08 | . 326.93               | 328.75 .         |
| Chi-Value (Oi-Ei) 2/Ei       | 100         | 0.80               | 11.10           | 0.36      | 0.00             | ~2.01  | 1.21                   | 5.14             |           | 0.86   | 17.72  | 5.21    | 1.39             | .0.00  | 1.40                   | - 11.27          |
| Other Chi-Value ( k-Yk) 2/Yi | -           | 3.01               | 1.36            | 0.03      | 0.00             | 0.00   | 0.01                   | 0.03             |           | 3.18   | 2.72   | 0.31    | 0.01             | 0.00   | 0.01                   | 0.04             |
| Total Chi-Value              |             |                    |                 |           | 20,63            |        | *** * ***              | 3 .              |           | ***    | n 1000 |         | 37.86            |        |                        | 7 12             |
| Lower Chi-Value              |             | 8                  |                 |           | 1.24             | - 3    | B . S . S . S          |                  |           |        |        |         | 1.24             |        |                        | 71. 4            |
| Upper Chi-Value              |             |                    |                 |           | 14.45            |        |                        |                  |           |        |        |         | 14.45            |        |                        |                  |
| Total Over-rep               |             |                    |                 | 1 1 1 1 2 | Yes              |        | * * ***                | * 100.00         | *** ** ** |        |        | andre e | Yes              |        |                        |                  |
| Category Chi-Values          | -           | 3.82               | 12.45           | 0.39      | 0.00             | 2.01   | 1.22                   | 5.17             | ÷         | 4.04   | 20.44  | 5.52    | 1.40             | 0.00   | 1.41                   | 11.31            |
| Category Over-rep            | -           | No                 | No              | No        | No               | No     | No -                   | Yes              | -         | No     | No     | Yes     | No               | No     | No                     | Yes              |

#### Over-Representation Analysis

|                              | SALES. | Ontaind |        |            |             |        |        |       | Hamilton |        |            |             |        |        |  |  |
|------------------------------|--------|---------|--------|------------|-------------|--------|--------|-------|----------|--------|------------|-------------|--------|--------|--|--|
| Road Surface Condition       | Total  | Dry     | Wet    | Loase Snow | Packed Snow | los.   | Stash  | Total | Dry      | Wet    | Loase Snow | Packed Snow | lce    | Slusfi |  |  |
| Observed (Oi)                | . 471  | 208     | . 239: | 8          | 4.          | 9.     | 3      | 471   | 208      | 239    | . 8        | .4          | 9 ::   | 3:     |  |  |
| Other Observed ( k)          | -      | 263     | 232    | 463        | 467         | 462    | 468    |       | 263      | 232    | 463        | 467         | 462    | 468    |  |  |
| Database (Ontario/Hamilton)  | 171582 | 121339  | 30490  | 6375       | - 3667 -    | 6406   | 3305   | 3417  | 2421     | . 752  | 96         | 38          | 75     | . 35   |  |  |
| Expected (Ei)                | 471    | 333.08  | 83.70  | 17.50      | 10.07       | 17.58  | 9.07   | - 471 | 333.71   | 103.66 | 13.23      | 5.24        | 10.34  | 4.82   |  |  |
| Other Expected (Yk)          | - 1    | 137.92  | 387.30 | 453,50     | 460.93      | 453.42 | 461.93 | ~     | 137.29   | 367.34 | 457.77     | 465.76      | 460.66 | 466.18 |  |  |
| Chi-Value (Oi-Ei) 2/Ei       | -2     | 46.97   | 288.18 | 5.16       | 3.66        | 4.19   | 4.06   | -     | 47.36    | 176.72 | 2.07       | 0.29 -      | 0.17   | 0.69   |  |  |
| Other Chi-Value ( k-Yk) 2/Yi | -1,-   | 113.44  | 62.27  | 0.20       | 0.08        | 0.16   | . 0:08 |       | 115.11   | 49.87  | 0.06       | 0.00.       | . 0:00 | 0.01   |  |  |
| Total Chi-Value              |        |         |        | . 352.21   |             |        |        |       |          | t      | 227.30     |             | 182 3  |        |  |  |
| Lower Chi-Value              |        |         |        | 0.83       |             |        |        | . 1   |          | - A10  | 0.83       |             |        |        |  |  |
| Upper Chi-Value              |        |         |        | 12.83      |             |        |        |       |          |        | 12.83      |             | *      |        |  |  |
| Total Over-rep               |        | 475.00  | ** *   | Yes .      |             | - G-   |        |       | - 00     | - ·    | . Yes .    |             |        |        |  |  |
| Category Chi-Values          |        | 160.41  | 350.45 | 5.36       | 3.74        | 4.35   | 4.14   |       | 162.47   | 226.59 | 2.13       | 0.30        | 0.18   | 0.70   |  |  |
| Category Over-rep            | -      | No      | Yes    | No         | No          | No .   | No     |       | No       | Yes    | No         | No          | No     | No     |  |  |

| Results - A | nnaront | Driver A | ction |
|-------------|---------|----------|-------|
|             |         |          |       |

|                              |        | Ontario   |                     |                   |                        |                         |         | Hamilton |                     |                   |                        |                         |  |  |
|------------------------------|--------|-----------|---------------------|-------------------|------------------------|-------------------------|---------|----------|---------------------|-------------------|------------------------|-------------------------|--|--|
| Apparent Driver Action       | Total  | Last      | Driving<br>Properly | Speed<br>Too Fast | Fellowing<br>Too Close | Improper<br>Lane Change | Total   | Lost     | Driving<br>Properly | Speed<br>Too Fast | Following<br>Too Close | Improper<br>Lane Change |  |  |
| Observed (Oi)                | 430    | 165       | 111                 | 59                | .48                    | 47 .                    | 430     | 165      | 111                 | 59                | 48                     | 47                      |  |  |
| Other Observed ( k)          | - 1    | 265       | -319                | - 371             | 382 -                  | 383                     | -       | 265      | 319                 | 371               | 382 -                  | - 383                   |  |  |
| Database (Ontario/Hamilton)  | 224518 | 19923     | 147890              | 16535             | 29974                  | 10196                   | 3870    | 488      | 2727                | 105               | 427                    | 123                     |  |  |
| Expected (Ei)                | 430    | 38.16     | 283.24              | 31.67             | . 57.41                | 19.53                   | 430     | 54.22    | 303.00              | 11.67             | 47.44                  | 13.67                   |  |  |
| Other Expected (Yk)          | -01    | 391.84    | 146.76              | 398.33            | 372.59                 | 410.47                  | 411     | 375.78   | 127.00              | 418.33            | - 382.56               | 416.33                  |  |  |
| Chi-Value (Oi-Ei) 2/Ei       | 4.7    | 421.66    | 104.74_             | 23.59             | 1.54                   | 38.65                   |         | 226.32   | 121.66              | 192.04            | 0.01                   | 81.30                   |  |  |
| Other Chi-Value ( k-Yk) 2/Yi |        | · 41.06 · | 202.15              | - 1.88            | 0.24                   | 1.84                    | P. 4. 1 | 32.66    | - 290.27            | - 5.36            | - 0.00                 | 2.67                    |  |  |
| Total Chi-Value              | e 1000 |           | 4                   | - 590.18          | 1 - 1- 1               |                         |         |          |                     | 621.33            |                        |                         |  |  |
| Lower Chi-Value              |        | * A       | 9                   | 0.48              | 7. 1 . 1 a             | *** n *                 | J 35    | 0000     | T VI II             | 0.48              | 2 2 4                  | · Tener in the          |  |  |
| Upper Chi-Value              | 4 6    | 5         | 4                   | 11,14             | ×                      |                         |         | pt 3.%   |                     | 11.14             |                        | 3 - Ž                   |  |  |
| Total Over-rep               |        |           | 75.75               | Yes               |                        | AC 5.00 - 2.00          | 100     |          |                     | Yes               |                        |                         |  |  |
| Category Chi-Values          |        | _462.72   | 306.89              | 25.46             | 1.78                   | 40.49                   |         | 258.98   | 411.93              | . 197.39          | 0.01                   | 83.97                   |  |  |
| Category Over-rep            | -      | Yes       | No                  | Yes               | No                     | Yes                     | 7 -     | " Yes    | - No                | Yes "             | - No                   | Yes                     |  |  |

**Appendix B: Illumination Warrants** 

# FORM 2 FREEWAY - CONTINUOUS ILLUMINATION

| Highway: | Red Hill Valley Parkway |           | WP No .: |
|----------|-------------------------|-----------|----------|
|          |                         | 3.46 54.7 |          |

Limits: from: Lincoln M. Alexander Parkway to: Greenhill Name: GB + KH Date: August 31, 2015

2 pages

| CLASSIFICATION                                            |                      |                             | RATING (I)              | · · · · · · · · · · · · · · · · · · · | SERVICE SERVICE                   | UNLIT             | LIGHT                   | DIFF       | SCOR                              |
|-----------------------------------------------------------|----------------------|-----------------------------|-------------------------|---------------------------------------|-----------------------------------|-------------------|-------------------------|------------|-----------------------------------|
| FACTOR                                                    | 1                    | 2                           | 3                       | 4                                     | 5                                 | WEIG<br>HT<br>(A) | ED<br>WEIG<br>HT<br>(B) | (A -<br>B) | E<br>[RATII<br>G<br>X (A -<br>B)] |
| Geometric Factors No. of Lanes (2-way)                    | 4                    | 5                           | 6                       | . 7                                   | 8                                 | 1.0               | 0.5                     | 0.5        | 1.00                              |
| Lane Width (m)                                            | > 3.75               | 3.75                        | 3.66                    | 3.50                                  | < 3.50                            | 3.0               | 2.5                     | 0.5        | 1.50                              |
| Median Width (m)                                          | > 15.0<br>or barrier | 3.00 ( 3.00 -               | 10.0 - 15.0             | e section se                          | < 10.0                            | 1.0               | 0.5                     | 0.5        | 1.50                              |
| Shoulders (m)                                             | 3.5                  | 3.25                        | 3.0                     | 2.75                                  | 2.5                               | 1.0               | 0.5                     | 0.5        | 2.50                              |
| Slopes                                                    | 7:1                  | 6:1                         | 5:1                     | 4:1                                   | < 4:1                             | 1.0               | 0.5                     | 0.5        | 2.00                              |
| Critical Curves<br>m<br>(deg.)                            | >3,500<br>(< 1/2°)   | 3,500-<br>1,800<br>(2 - 1°) | 1,799-850<br>(1.1 - 2°) | 849-600<br>(2.1 - 3°)                 | 599-450<br>(3.1 - 4°)             | 13.0              | 4.5                     | 8.5        | 34.0                              |
| Grades (vertical)                                         | < 3%                 | 3 - 3.9%                    | 4 - 4.9%                | 5 - 6.9%                              | 7%                                | 3.2               | 2.8                     | 0.4        | 0.80                              |
| Interchange<br>Spacing (km)                               | >3.0                 | 2.1 - 3.0                   | 1.6 - 2.0               | 1.0 - 1.5                             | < 1.0                             | 4.0               | 1.0                     | 3.0        | 12.0                              |
|                                                           |                      |                             |                         |                                       |                                   |                   | Geom<br>Tot             |            | 55.30                             |
| Operational Factors Level of Service (ii) (any dark hour) | A                    | В                           | С                       | D                                     | E, F                              | 6.0               | 1.0                     | 5.0        | 25.0                              |
|                                                           |                      |                             |                         |                                       |                                   |                   | Operat<br>Tot           |            | 25.0                              |
| Environmental<br>Factors<br>% Development                 | 0%                   | 25%                         | 50%                     | 75%                                   | 100%                              | 3.5               | 0.5                     | 3.0        | 3.0                               |
| Illumination<br>adjacent to Freeway                       | none                 | 0 - 40%                     | 41 - 60%                | 61 - 80%                              | essentiall<br>y<br>continuo<br>us | 3.0               | 1.0                     | 2.0        | 2.0                               |
| 70                                                        |                      |                             |                         |                                       |                                   |                   | Environr<br>Tota        |            | 5.0                               |

# FORM 2 FREEWAY - CONTINUOUS ILLUMINATION

| Highway:                                                  | Red Hill Valley P | arkway       | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |          | WP No.: |                            |                                  |                    |                                           |  |
|-----------------------------------------------------------|-------------------|--------------|-----------------------------------------|----------|---------|----------------------------|----------------------------------|--------------------|-------------------------------------------|--|
| Limits: from:                                             | Lincoln M. Alexar | nder Parkway | to: Greenh                              | illName: | GB + KH | Date                       | e: Augus                         | t 31, 201          | <u>5</u>                                  |  |
| 2 pag                                                     | es                | 11 at        |                                         |          | * = 21  | к                          |                                  |                    |                                           |  |
| CLASSIFICATION<br>FACTOR                                  | 1                 | 2            | RATING (I)                              | 4        | 5       | UNLIT<br>WEIG<br>HT<br>(A) | LIGHT<br>ED<br>WEIG<br>HT<br>(B) | DIFF<br>(A -<br>B) | SCOR<br>E<br>[RATIN<br>G<br>X (A -<br>B)] |  |
|                                                           |                   | ,            |                                         |          |         |                            | 2                                | 8 · 2              |                                           |  |
| Accidents % of Night-to-Tota Accidents (3 yr. avg.) (iii) | < 20%             | 20 - 30%     | 31 - 40%                                | 41 - 50% | > 50%   | 10.0                       | 2.0                              | 8.0                | 32.0                                      |  |
|                                                           |                   | * ** *       | - 4                                     |          |         | 1                          | Accid                            |                    | 32.0                                      |  |

Benefit Cost Ratio (B/C)

i.

GEOMETRIC TOTAL = 55.3

OPERATIONAL TOTAL = 25.0

ENVIRONMENTAL TOTAL = 5.0

ACCIDENTS TOTAL = 32.0

SUM = 117.3 POIN
CONTINUOUS ILLUMINATION = 80 points
WARRANTING CONDITION

ii. Use LOS methodology approved by the MTO.

Note: Worst case scenarios should be considered when assigning the ratings. For example, a section of roadway could have rush hour volumes during the hours of darkness in wintertime.

\*CIMA+ Note\* Level of Service is expected to reach E during winter season (PM peak hours can occur during dark hours)

A rating of between 1 and 5 shall be assigned for each factor in the FORM depending on the conditions that are encountered by motorists on the roadway. The higher the rating, the more critical the need for illumination with regard to that particular factor.

iii. For night-to-total accident ratio, accidents during darkness are used (including dusk/dawn).

iv. The number of points for the warranting condition is based on 50% of the total points attainable, if all factors were rated 5.

FORM 2
FREEWAY - CONTINUOUS ILLUMINATION

Highway: Red Hill Valley Parkway WP No.:

Limits: from: Greenhill to: QEW Name: GB + KH Date: August 31, 2015 2 pages RATING (I) LIGHT CLASSIFICATION UNLIT DIFF SCOR WEIG FACTOR -. E B) -2 ... 3 5 HT ED [RATIN WEIG (A) G HT X (A -(B) B)] **Geometric Factors** 0.50 5 6 7 8 No. of Lanes (2-1.0 0.5 0.5 way) > 3:75 3.75 3.66 3.50 < 3.50 3.0 2.5 Lane Width (m) 0.5 1.50 Median Width (m) > 15.0 10.0 - 15.0 < 10.0 1.0 0.5 0.5 1.50 or barrier Shoulders (m) 3.5 3.25 3.0 0.5 2.75 2.5 1.0 0.5 2.50. 7:1 Slopes ... 6:1 5:1 4:1 ---< 4:1 1.0 0.5 0.5 2.0 Critical Curves 3,500-42.50 1,800 >3,500 1,799-850 849-600 599-450 m 13.0 4.5 8.5 (deg.)  $(< 1/2^{\circ})$  $(2 - 1^{\circ})$  $(1.1 - 2^{\circ})$  $(2.1 - 3^{\circ})$  $(3.1 - 4^{\circ})$ < 3% 3 - 3.9% 4-4.9% 7% Grades (vertical) 5 - 6.9% 3.2 2.8 0.4 0.40 >3.0 1.0 - 1.5< 1.0 2.1 - 3.01.6 - 2.04.0 Interchange 1.0 3.0 12.0 Spacing (km) 62.90 Geometric Total Operational **Factors** В C D E, F 6.0 25.0 A 1.0 5.0 Level of Service (ii) (any dark hour) 25.0 Operational Total 3.0 Environmental 0% 25% 50% 75% 100% 3.5 0.5 3.0 **Factors** % Development 0 - 40% 41 - 60% 61 - 80% Illumination none essentiall 3.0 1.0 2.0 2.0 adjacent to Freeway

continuo us

5.0

Environmental Total

# FORM 2 FREEWAY - CONTINUOUS ILLUMINATION

| Limits: from: Gre<br>2 pages            | enhill to | o: QEW                                           | N                                 | ame: <u>GB+K</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>H</u> Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | te: Augu                              | st 31, 201                  | <u>5</u>     |                     |
|-----------------------------------------|-----------|--------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|--------------|---------------------|
| CLASSIFICATION<br>FACTOR                | . 1       | 2                                                |                                   | UNLIT<br>WEIG<br>HT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIFF<br>(A -                          | SCOR<br>E<br>[RATIN         |              |                     |
|                                         |           | -                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A)                                   | WEIG<br>HT<br>(B)           | €.           | G<br>X (A -<br>B)]  |
| 3 2                                     | . 8 4 .   | 5.                                               | 4 44 4                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             | 1            |                     |
| Accidents<br>% of Night-to-Total        | < 20%     | 20 - 30%                                         | 31 - 40%                          | 41 - 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                                  | 2.0                         | 8.0          | 8.8                 |
| Accidents (3 yr. avg.) (iii)            |           |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŧ                           |              | 24.0                |
| ** ** ** * * ** ** ** ** ** ** ** ** ** |           |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 A- 15 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * * * * * * * * * * * * * * * * * * * | Accid                       |              | 24.0                |
| Benefit Cost Ratio (B/0                 | D)        | E REEL SHE                                       | S FRANCE SERVICES                 | The second secon | AND MANAGEMENT OF THE SECOND O | Market Branch Street                  | TO SERVICE SERVICE SERVICES |              | Carlo Carlo Control |
| Section and the second                  | 90+ x     | GEOMETRIC<br>OPERATION<br>ENVIRONME<br>ACCIDENTS | AL TOTAL<br>NTAL TOTAL            | = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.9<br>25.0<br>5.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x                                     |                             | : M: ME 100K | 1                   |
|                                         |           |                                                  | S<br>IS ILLUMINAT<br>IG CONDITION | ION = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.9<br>0 points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POINTS                                |                             |              |                     |

A rating of between 1 and 5 shall be assigned for each factor in the FORM depending on the conditions that are encountered by
motorists on the roadway. The higher the rating, the more critical the need for illumination with regard to that particular factor.

ii. Use LOS methodology approved by the MTO.

iii. For night-to-total accident ratio, accidents during darkness are used (including dusk/dawn).

Note: Worst case scenarios should be considered when assigning the ratings. For example, a section of roadway could have rush hour volumes during the hours of darkness in wintertime.

\*CIMA+ Note\* Level of Service is expected to reach E during winter season (PM peak hours can occur during dark hours)

iv. The number of points for the warranting condition is based on 50% of the total points attainable, if all factors were rated 5.



A CONTRACTOR OF THE CONTRACTOR

Figure 9-11 - Warrant for Lighting Freeways

January 2006 9-19

## Roadways and Interchanges ▼ Chapter 9



Figure 9-11 - Warrant for Lighting Freeways

January 2006 9-19

# **Appendix C: Evaluation of Providing a Median Barrier**

### Appendix C Evaluation of Providing a Median Barrier

The selection of best type of median barrier system within the study area was undertaken in the following steps:

- Determination of feasibility of barrier types for the study area;
- ♣ Development of alternatives; and
- Selection of the best alternative based on cost-effective analysis.

### **Determination of Feasibility of Barrier Types for the Study Area**

CIMA conducted an analysis of various types of prevailing median barrier technologies in Canada based on MTO's Roadside Safety Manual and AASHTO Roadside Design Guide to determine feasible barrier types for the RHVP. The results of the analysis along with the characteristics of each barrier type that makes it suitable or unsuitable for the RHVP are included in Table 1.

Table 1: Analysis for the Feasibility of Various Barrier Systems for the RHVP

| Type of Median<br>Barrier                               | Relevant Characteristics                                                                                                                                                                                                                                                                     | Feasibility for the RHVP                                                        |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 6 Cable (Wood Post)                                     | Not approved for use on high speed facilities                                                                                                                                                                                                                                                | Not feasible for the RHVP due to high speed                                     |
| 6 Cable (Steel Post)                                    | <ul> <li>Recommended for AADT &lt; 20,000</li> <li>Ideal for median width greater than 9 m</li> </ul>                                                                                                                                                                                        | Not feasible for the<br>RHVP due to high<br>AADT                                |
| Median Box Beam<br>Barrier                              | <ul> <li>Restricted to facilities with posted speeds less than<br/>80 km/h</li> <li>Recommended for AADT &lt; 30,000</li> </ul>                                                                                                                                                              | Not feasible for the<br>RHVP due to high<br>AADT and speed                      |
| Median Steel Beam<br>Guide Rail with<br>Channel         | <ul> <li>Recommended for AADT &gt; 20,000</li> <li>Can be installed in medians greater than 9.0 m</li> </ul>                                                                                                                                                                                 | Feasible for the RHVP                                                           |
| Standard Concrete<br>Barrier and Ontario<br>"Tall Wall" | <ul> <li>No curbs, gutters or ditches allowed between the barrier and the driving lanes</li> <li>Area directly in front of barrier must be paved</li> <li>Should not be located more than 4.0 metres from the edge of the driving lane (maximum width of median to be 9.0 metres)</li> </ul> | Not feasible for the<br>RHVP due to a median<br>width larger than 9.0<br>metres |
| High-Tension Cable<br>Barrier*                          | <ul> <li>2011 AADT range – 25,820 to 46, 200</li> <li>Posted Speed – 110 km/h</li> </ul>                                                                                                                                                                                                     | Feasible for the RHVP                                                           |
| *Based on Successful Al                                 | berta experience in addressing cross median collisions by using                                                                                                                                                                                                                              | the High-Tension Cable                                                          |

<sup>\*</sup>Based on Successful Alberta experience in addressing cross median collisions by using the High-Tension Cable Barrier system on Highway 2 between Airdrie and Red Deer

As can be seen in Table 1, Median Steel Beam Guide Rail, and High-Tension Cable Barriers are feasible options for providing a median barrier for the RHVP. It should be noted that all kinds of barrier systems can be transitioned from one type to another by using standard methods. The guidance is available in MTO's Roadside Manual and AASHTO Roadside Design Guide. The appropriate types of transitions should be determined at the detailed design stage.

Based on the feasible barrier options detailed above, various alternatives available for providing a median barrier on the RHVP are as follows:

### **Appendix C**

### **Evaluation of Providing a Median Barrier**

### Alternative 1: Standard Steel Beam Guide Rail with Channel System on Both Sides of the Median

Provide Standard Steel Beam Guide Rail with Channel systems on both sides of the median. It should be noted that for medians, steel beam guide rails are provided with channel elements to increase the stiffness of the installation<sup>1</sup>. An example Standard Steel Beam Guide Rail with Channel System installed on a median on Highway 403 is demonstrated in Figure 1.



Figure 1: An Example Standard Steel Beam Guide Rail with Channel System

### Alternative 2: High Tension Cable Barrier on Both Sides of the Median

Provide High-Tension Cable Barrier on both sides of the median. An example of High Tension Cable Barrier installed on both sides of a median location on Highway 2 in Alberta is demonstrated in Figure 2.



Figure 2: An Example High Tension Cable Barrier

<sup>&</sup>lt;sup>1</sup> Section 4.3.5, MTO's Roadside Safety Manual

### Appendix C

### **Evaluation of Providing a Median Barrier**

### **Cost Estimate**

The detailed cost estimates for the two alternatives are provided in Table 2

**Table 2: Alternatives Cost Estimate** 

|               | Description                                                          | Unit | Qty.    | Unit<br>Price<br>\$ | Total Price \$ |
|---------------|----------------------------------------------------------------------|------|---------|---------------------|----------------|
|               | Earth Works                                                          | M.R. | 6000    | 100                 | 600,000        |
| 7             | Supply & Install Standard Steel Beam Guide Rail with Channel Systems | M.R. | 11200   | 120                 | 1,344,000      |
| ativ          | Supply & Install Extruder and Treatment                              | No.  | 10      | 3250                | 32,500         |
| Alternative   | Supply & Install Object Marker Warning Sign                          | No.  | 10      | 500                 | 5,000          |
| 4             | 30 Years Maintenance Cost (\$4500 x 8.2 x 30)                        |      |         |                     | 1,107,000      |
| A STANDARD OF | Total Alternative 1                                                  |      |         |                     | \$3,088,500    |
|               | Earth Works ·                                                        | M.R. | 6000    | 100                 | 600,000        |
| 2             | Supply & Install High-Tension Cable Barrier                          | M.R. | - 11200 | 72                  | 806,400        |
| ative         | Supply & Install Anchor End Terminal                                 | No.  | 20      | 500                 | 10,000         |
| Alternative   | Supply & Install Object Marker Warning Sign                          | No.  | 10      | 500                 | 5,000          |
| ₹             | 30 Years Maintenance Cost (\$4500 x 8.2 x 30)                        |      |         |                     | 1,107,000      |
|               | Total Alternative 2                                                  |      |         |                     | \$2,528,400    |

### **Cost-effective Analysis**

In order to select the best possible alternative of installing a median barrier from the available alternatives detailed in Section 1.2, a cost-benefit analysis was conducted. Barrier systems have an assumed service life of 30 years. Median barriers generally eliminate all cross-over collisions including cross-over fatal collisions. However, median barriers tend to increase overall number of collisions, primarily PDO collisions. The methodology and results of the analysis are provided in the following sections.

### Methodology

The cost-effective analysis to determine most cost-effective median barrier type was conducted by utilizing the following steps.

### **Estimate Number of Collisions Likely to Occur**

CIMA attempted to develop Safety Performance Functions (SPFs) for median related collisions of the study area. Statistically significant models could not be developed as a result of limited number of segments that can be utilized for the prediction of long term average of median related collisions for the study area. In the absence of SPFs, we used annual average crash rates (Collisions per 100 million vehicles kilometers) to

### Appendix C Evaluation of Providing a Median Barrier

estimate the expected number of median related collisions for future 30 years. Collision distribution (proportions of fatal, injury and PDO collisions) was assumed based on the historical collision data.

### **Estimate the Severity of Collisions**

The next step is based on the assumption that each alternative barrier system would prevent the above number of median related high severity collisions over next 30 years. However, there would be an equal number of collisions of less severity involving each type of barrier system with a different potential of posing harm as a result of a collision.

AASHTO provides Severity Indices (SI) for all types of barrier systems to quantify the potential for harm posed as a result of a collision. Each type of barrier system is assigned a Severity Index (SI), which correlates to the likelihood that the collision will result in a PDO, injury, or a fatality collision. By utilizing the SI for a barrier system, and estimated number of collisions from the previous step, it is possible to estimate the proportions of different collision types. Based on this approach, a collision distribution (PDO, injury, and fatal) for each alternative barrier system can be estimated.

The severity indices provided by AASHTO were further revised based on the recent studies involving median barriers. In this analysis, we utilized the severity results from the following two studies:

- High Tension Cable Barrier Performance Evaluation Study for Highway 2 in Alberta; and
- Cable Median Barrier Program in Washington State.

Table 3 provides the proportions of collisions with different severity levels based on the above noted studies.

| Type of Median Barrier<br>System | Proportions | Proportions of Median Barrier Collisions |       |  |  |  |
|----------------------------------|-------------|------------------------------------------|-------|--|--|--|
|                                  | Fatal       | Injury                                   | PDO   |  |  |  |
| Steel Beam Guiderail             | 0.007       | 0.140                                    | 0.853 |  |  |  |
| High Tension Cable Barrier       | 0.005       | 0.095                                    | 0.900 |  |  |  |

Table 3: Proportions of Median Barrier Collisions by Severity

### **Cost-effective Analysis**

The cost-effective analysis to compare both alternatives was conducted using a benefit-cost ratio (B/C) and on incremental basis, to realize the greatest benefit at the least cost. In this methodology, the alternatives are first ordered from lowest to highest cost. The incremental benefits of the second over the first are calculated by dividing the incremental costs of the second over the first. If the ratio is greater than 1, then alternative 2 is preferred. If the ratio is less than 1 then alternative 1 is superior alternative. The better of these is then compared with the next most costly alternative and so on. The following steps were performed for calculating B/C:

★ Estimate life cycle cost of each alternative including capital cost and operating and maintenance cost.
The capital cost includes the purchase price, installation cost, and the activities that would not take

### Appendix C

### **Evaluation of Providing a Median Barrier**

place otherwise, such as paving, modifications to drainage, etc.)Operating and maintenance cost includes recurring cost of operating and maintaining the system during its useful life;

- Estimate the societal cost of collision for each year that will be prevented by installing the barrier system as estimated over the service life of the barrier system. This was considered as benefit;
- → Estimate the societal cost of less severe collisions for each year involving the barrier system, after the barrier system has been put into place. This was considered as negative benefit; and
- Calculate B/C by dividing the present value of the societal benefits by the present value of the life cycle

#### Calculations

The following assumptions were utilized for performing cost-effective analysis calculations according to the methodology detailed above.

- An annual average collision rate of 6.88 collisions per 100 million vehicles kilometres was used for calculating expected number of collisions under existing conditions (without implementing a median barrier system). This collision rate calculated was based on 8 years historical collision data from 2008 to 2015<sup>2</sup>.
- Collision distribution used was based on the actual proportions of historical collision data from 2008 to 2015 (1.67% for fatal, 43.33% for injury, and 55.00% for PDO);
- Expected collisions after implementing different types of median barriers were calculated based proportions of fatal, injury, and PDO median related collisions associated with different types of median barrier systems obtained from recent before and after studies<sup>3,4</sup>. Table 4 shows the proportions collisions used for different alternatives.

Table 4: Proportions of Median Related Collisions for Various Alternatives

| Alternative                        | Proportions of Median Related Collisions |        |       |  |  |
|------------------------------------|------------------------------------------|--------|-------|--|--|
|                                    | Fatal                                    | Injury | PDO   |  |  |
| Alternative 1 (Steel Beam)         | 0.007                                    | 0.140  | 0.853 |  |  |
| Alternative 2 (High Tension Cable) | 0.005                                    | 0.095  | 0.900 |  |  |

- Societal costs of collisions used were based on MTO's current costs of collisions (\$ 1,582,000 for a fatal collision, \$ 59,000 for an injury collision, and \$ 8,000 for a PDO collision).
- ♣ An annual average growth factor of 2% was used to project AADT.
- \* The expected implementation year was considered as 2015.
- The analysis was conducted based on a service life of 30 years for each type of barrier system.

<sup>&</sup>lt;sup>2</sup> 2015 Collision data is only for the first 7 months (1/1/2015 – 23/07/2015)

<sup>&</sup>lt;sup>3</sup> High Tension Cable Barrier Performance Evaluation Study for Highway 2 in Alberta

<sup>&</sup>lt;sup>4</sup> Cable Median Barrier Program in Washington

### **Appendix C**

### **Evaluation of Providing a Median Barrier**

Collision rate in collisions per 100 million vehicles kilometres based on historical collision data (2008 - 2015) are shown in Table 5

Table 5: Collision Rate Based on Historical Data

| Year           | AADT   | Number of Collisions      | Collision Rate |
|----------------|--------|---------------------------|----------------|
| 2008           | 45,748 | 6                         | 6.53           |
| 2009           | 55,261 | 5                         | 4.51           |
| 2010           | 59,123 | 8                         | 6.74           |
| 2011           | 60,305 | 5                         | 4.13           |
| 2012           | 61,511 | - 5                       | 4.05           |
| 2013           | 62,741 | 9                         | 7.15           |
| 2014           | 63,996 |                           | 10.12          |
| 2015           | 65,276 |                           | 11.82          |
| ese s se se de | F      | Average of Collision Rate | 6.88           |

Estimate of numbers of collisions likely to occur based on the historical collision rate (6.88 Collisions per 100 Million Vehicles Kilometres) and societal cost of collisions without implementing a median barrier are shown in Table 6

Table 6: Expected Collisions and Societal Cost before Implementing Median Barrier

| Year | AADT                | Expected Collisions<br>Before | Fatal (1.67%) | Injury (43.33%) | PDO (55.00%) | Expected<br>Societal Cost |
|------|---------------------|-------------------------------|---------------|-----------------|--------------|---------------------------|
| 2016 | 66,582              | 9.20                          | 0.15          | 3.99            | 5.06         | \$518,127.88              |
| 2017 | 67,914              | 9.38                          | 0.16          | 4.07            | 5.16         | \$528,493.24              |
| 2018 | 69,272              | 9.57                          | 0.16          | 4.15            | 5.26         | \$539,060.92              |
| 2019 | 70,657              | 9.76                          | 0.16          | 4.23            | 5.37         | \$549,838.72              |
| 2020 | 72,070              | 9.96                          | 0.17          | 4.31            | 5.48         | \$560,834.40              |
| 2021 | 73,511              | 10.15                         | 0.17          | 4.40            | 5.59         | \$572,047.98              |
| 2022 | 74 <del>,</del> 981 | 10.36                         | 0.17          | 4.49            | 5.70         | \$583,487.23              |
| 2023 | 76,481              | 10.56                         | 0.18          | 4.58            | 5.81         | \$595,159.93              |
| 2024 | 78,011              | 10.78                         | 0.18          | 4.67            | 5.93         | \$607,066.08              |
| 2025 | 79,571              | 10.99                         | 0.18          | 4.76            | 6.05         | \$619,205.69              |
| 2026 | 81,162              | 11.21                         | 0.19          | 4.86            | 6.17         | \$631,586.54              |
| 2027 | 82,785              | 11.44                         | 0.19          | 4.96            | 6.29         | \$644,216.40              |
| 2028 | 84,441              | 11.66                         | 0.19          | 5.05            | 6.42         | \$657,103.07              |
| 2029 | 86,130              | 11.90                         | 0.20          | 5.16            | 6.54         | \$670,246.53              |
| 2030 | 87,853              | 12.14                         | 0.20          | 5.26            | 6.67         | \$683,654.57              |

### Appendix C Evaluation of Providing a Median Barrier

| Year | AADT    | Expected Collisions Before | Fatal (1.67%) | Injury (43.33%) | PDO (55.00%)    | Expected<br>Societal Cost |
|------|---------|----------------------------|---------------|-----------------|-----------------|---------------------------|
| 2031 | 89,610  | 12.38                      | 0.21          | 5.36            | 6.81            | \$697,327.19              |
| 2032 | 91,402  | 12.63                      | 0.21          | 5.47            | 6.94            | \$711,272.18              |
| 2033 | 93,230  | 12.88                      | 0.21          | 5.58            | 7.08            | \$725,497.31              |
| 2034 | 95,095  | . 13.14                    | 0.22          | 5.69            | 7.22            | \$740,010.37              |
| 2035 | 96,997  | 13.40                      | 0.22          | 5.81            | 7.37            | \$754,811.36              |
| 2036 | 98,937  | 13.67                      | 0.23          | 5.92            | 7.52            | \$769,908.05              |
| 2037 | 100,916 | 13.94                      | 0.23          | 6.04            | 7.67            | \$785,308.24              |
| 2038 | 102,934 | 14.22                      | 0.24          | 6.16            | 7.82            | \$801,011.91              |
| 2039 | 104,993 | 14.50                      | 0.24          | 6.28            | 7.98            | \$817,034.64              |
| 2040 | 107,093 | 14.79                      | 0.25          | 6.41            | 8.14            | \$833,376.42              |
| 2041 | 109,235 | 15.09                      | 0.25          | 6.54            | 8.30            | \$850,045.04              |
| 2042 | 111,420 | 15.39                      | 0.26          | 6.67            | 8.47            | \$867,048.28              |
| 2043 | 113,648 | 15.70                      | 0.26          | 6.80            | 8.63            | \$884,386.13              |
| 2044 | 115,921 | 16.01                      | 0.27          | 6.94            | 8.81            | \$902,074.16              |
| 2045 | 118,239 | 16.33                      | 0.27          | 7.08            | 8.98            | \$920,112.38              |
| 2016 | 66,582  | 9.20                       | 0.15          | 3.99            | 5.06            | \$518,127.88              |
|      |         |                            |               | Total Expected  | d Societal Cost | \$21,019,352.86           |

Estimate of numbers of collisions likely to occur after implementation of a median barrier and societal cost of collisions for each alternative are shown in Table 7 to **Error! Reference source not found.** and using proportions from Table 4.

Table 7: Expected Number of Collisions after Implementing Alternative 1 (Steel Beam Guiderail)

| Year | Excepted Collisions (Before) | Expected Collisions After |        |      |               |  |
|------|------------------------------|---------------------------|--------|------|---------------|--|
| real | Excepted Collisions (Before) | Fatal                     | Injury | PDO  | Societal Cost |  |
| 2016 | 9.20                         | 0.06                      | 1.29   | 7.85 | \$240,589.16  |  |
| 2017 | 9.38                         | 0.07                      | 1.31   | 8.00 | \$245,402.24  |  |
| 2018 | 9.57                         | 0.07                      | 1.34   | 8.16 | \$250,309.27  |  |
| 2019 | 9.76                         | 0.07                      | 1.37   | 8.33 | \$255,313.87  |  |
| 2020 | 9.96                         | 0.07                      | 1.39   | 8.49 | \$260,419.64  |  |
| 2021 | 10.15                        | 0.07                      | 1.42   | 8.66 | \$265,626.59  |  |
| 2022 | 10.36                        | 0.07                      | 1.45   | 8.84 | \$270,938.32  |  |

## Appendix C Evaluation of Providing a Median Barrier

| Year  | Excepted Collisions (Before) | Expected Collisions After |              |              |                |  |
|-------|------------------------------|---------------------------|--------------|--------------|----------------|--|
| i eai | Excepted Collisions (Belore) | Fatal                     | Injury       | PDO          | Societal Cost  |  |
| 2023  | 10.56                        | 0.07                      | 1.48         | 9.01         | \$276,358.46   |  |
| 2024  | 10.78                        | 0.08                      | 1.51         | 9.19         | \$281,887.01   |  |
| 2025  | 10.99                        | 0.08                      | 1.54         | 9.38         | \$287,523.95   |  |
| 2026  | 11.21                        | 0.08                      | 1.57         | 9.56         | \$293,272.91   |  |
| 2027  | 11.44                        | 0.08                      | 1.60         | 9.75         | \$299,137.50   |  |
| 2028  | 11.66                        | 0.08                      | 1.63         | 9.95         | \$305,121.34   |  |
| 2029  | 11.90                        | 0.08                      | 1.67         | 10.15        | \$311,224.41   |  |
| 2030  | 12.14                        | 0.08                      | 1.70         | 10.35        | \$317,450.35   |  |
| 2031  | 12.38                        | 0.09                      | 1.73         | 10.56        | \$323,799.14   |  |
| 2032  | 12.63                        | 0.09                      | 1.77         | 10.77        | \$330,274.40   |  |
| 2033  | 12.88                        | 0.09                      | 1.80         | 10.99        | \$336,879.74   |  |
| 2034  | 13.14                        | 0.09                      | 1.84         | 11.21        | \$343,618.78   |  |
| 2035  | 13.40                        | 0.09                      | 1.88         | 11.43        | \$350,491.52   |  |
| 2036  | 13.67                        | 0.10                      | 1.91         | 11.66        | \$357,501.57   |  |
| 2037  | 13.94                        | 0.10                      | 1.95         | 11.89        | \$364,652.54   |  |
| 2038  | 14.22                        | 0.10                      | 1.99         | 12.13        | \$371,944.43   |  |
| 2039  | 14.50                        | 0.10                      | 2.03         | 12.37        | \$379,384.48   |  |
| 2040  | 14.79                        | 0.10                      | 2.07         | 12.62        | \$386,972.67   |  |
| 2041  | 15.09                        | 0.11                      | 2.11         | 12.87        | \$394,712.63   |  |
| 2042  | 15.39                        | 0.11                      | 2.15         | 13.13        | \$402,607.97   |  |
| 2043  | 15.70                        | 0.11                      | 2.20         | 13.39        | \$410,658.68   |  |
| 2044  | 16.01                        | 0.11                      | 2.24         | 13.66        | \$418,872.00   |  |
| 2045  | 16.33                        | 0.11                      | 2.29         | 13.93        | \$427,247.92   |  |
|       | Total Expected Socie         | etal Cost Afte            | r Barrier Im | plementation | \$9,760,193.47 |  |

Table 8: Expected Number of Collisions after Implementing Alternative 2 (High Tension Cable)

| Year Expe | Fire and Calliniana Bafara |       | Exp    | ected Collisions | After         |
|-----------|----------------------------|-------|--------|------------------|---------------|
|           | Expected Collisions Before | Fatal | Injury | PDO              | Societal Cost |
| 2016      | 9.20                       | 0.05  | 0.87   | 8.28             | \$190,526.96  |
| 2017      | 9.38                       | 0.05  | 0.89   | 8.44             | \$194,338.53  |

### Appendix C

# Evaluation of Providing a Median Barrier

| Year  | Expected Collisions Before | Expected Collisions After |        |       |               |  |
|-------|----------------------------|---------------------------|--------|-------|---------------|--|
| real  | Expected Collisions Before | Fatal                     | Injury | PDO   | Societal Cost |  |
| 20.18 | 9.57                       | 0.05                      | 0.91   | .8.61 | \$198,224.50  |  |
| 2019  | 9.76                       | 0.05                      | 0.93   | 8.78  | \$202,187.73  |  |
| 2020  | 9.96                       | 0.05                      | 0.95   | 8.96  | \$206,231.09  |  |
| 2021  | 10.15                      | 0.05                      | 0.96   | 9.14  | \$210,354.57  |  |
| 2022  | 10.36                      | 0.05                      | 0.98   | 9.32  | \$214,561.03  |  |
| 2023  | 10.56                      | 0.05                      | 1.00   | 9.51  | \$218,853.34  |  |
| 2024  | 10.78                      | 0.05                      | 1.02   | 9.70  | \$223,231.49  |  |
| 2025  | 10.99                      | 0.05                      | 1.04   | 9.89  | \$227,695.49  |  |
| 2026  | 11.21                      | 0.06                      | 1.07   | 10.09 | \$232,248.20  |  |
| 2027  | 11.44                      | 0.06                      | 1.09   | 10.29 | \$236,892.48  |  |
| 2028  | 11.66                      | 0.06                      | 1.11   | 10.50 | \$241,631.18  |  |
| 2029  | 11.90                      | 0.06                      | 1.13   | 10.71 | \$246,464.32  |  |
| 2030  | 12.14                      | 0.06                      | 1.15   | 10.92 | \$251,394.75  |  |
| 2031  | 12.38                      | 0.06                      | 1.18   | 11.14 | \$256,422.48  |  |
| 2032  | 12.63                      | 0.06                      | 1.20   | 11.36 | \$261,550.35  |  |
| 2033  | 12.88                      | 0.06                      | 1.22   | 11.59 | \$266,781.25  |  |
| 2034  | . 13.14                    | 0.07                      | 1.25   | 11.82 | \$272,118.02  |  |
| 2035  | 13.40                      | 0.07                      | 1.27   | 12.06 | \$277,560.66  |  |
| 2036  | 13.67                      | 0.07                      | 1.30   | 12.30 | \$283,112.05  |  |
| 2037  | 13.94                      | 0.07                      | 1,32   | 12.55 | \$288,775.03  |  |
| 2038  | 14.22                      | 0.07                      | 1.35   | 12.80 | \$294,549.62  |  |
| 2039  | 14.50                      | 0.07                      | 1.38   | 13.05 | \$300,441.53  |  |
| 2040  | 14.79                      | 0.07                      | 1.41   | 13.31 | \$306,450.76  |  |
| 2041  | 15.09                      | 0.08                      | 1.43   | 13.58 | \$312,580.17  |  |
| 2042  | 15.39                      | 0.08                      | 1.46   | 13.85 | \$318,832.63  |  |
| 2043  | 15.70                      | 0.08                      | 1.49   | 14.13 | \$325,208.14  |  |
| 2044  | 16.01                      | 0.08                      | 1.52   | 14.41 | \$331,712.42  |  |
| 2045  | 16.33                      | 80.0                      | 1.55   | 14.70 | \$338,345.47  |  |

**Appendix D: Benefit-Cost Analysis for Other Countermeasures** 

### **Benefit-Cost Analysis**

The Benefit-Cost (B/C) ratio is the ratio of the present value of the safety benefit of a given countermeasure calculated for its service life to the present value of the cost of the countermeasure. A B/C ratio of greater than 1.0 represents an economically efficient countermeasure. In this criterion, the monetary value of the collisions reduced as a result of implementation of a countermeasure is considered as the benefit of the countermeasure. For the purposes of calculating the societal costs of collisions, MTO costs were utilized. Details of the B/C analysis for countermeasures other than median barrier are included in the following tables.

### **Provide Speed Feedback Signs**

The CMF for this countermeasure is 0.88, and the construction cost is \$10,000 per site for a service life of 10 years.

Collision rate of total collisions in collisions per 100 million vehicles kilometres based on historical collision data (2008 – 2015¹):

| Year | AADT   | Number of Total Collisions | Collision Rate |
|------|--------|----------------------------|----------------|
| 2008 | 45,748 | 10                         | 26.04          |
| 2009 | 55,261 | 11                         | 23.71          |
| 2010 | 59,123 | 22                         | 44.32          |
| 2011 | 60,305 | 29                         | 57.28          |
| 2012 | 61,511 | 24                         | 46.48          |
| 2013 | 62,741 | 38                         | 72.15          |
| 2014 | 63,996 | 37                         | 68.87          |
| 2015 | 65,276 | 26                         | 81.69          |
|      |        | Average of Collision Rate  | 52.57          |

Estimate of number of total collisions likely to occur based on the historical collision rate (36.14 collisions per 100 million vehicles kilometres) and societal cost of collisions without implementing speed feedback signs during next 10 years (service life of signs). 2015 is the assumed implementation year. The proportions of different severity collisions of total collisions shown in the header of the following table are based on the actual experienced during the history period.

<sup>&</sup>lt;sup>1</sup> 2015 Collision data is only for the first 7 months (1/1/2015 – 23/07/2015)

### **Benefit-Cost Analysis**

| Year   | AADT    | Total Collisions | Fatal (0.00%) | Injury (44.16%) | PDO (55.84%) | Expected<br>Societal Cost |
|--------|---------|------------------|---------------|-----------------|--------------|---------------------------|
| 2016   | 66,582  | 29.38            | 0.00          | 12.98           | 16.41        | \$896,843.06              |
| 2017   | 67,914  | 29.97            | 0.00          | 13.24           | 16.73        | \$914,784.77              |
| 2018   | 69,272  | 30.57            | 0.00          | 13.50           | 17.07        | \$933,076.70              |
| 2019   | 70,657  | 31.18            | 0.00          | 13.77           | 17.41        | \$951,732.31              |
| 2020   | 72,070  | 31.80            | 0.00          | 14.05           | 17.76        | \$970,765.07              |
| 2021   | 73,511  | 32.44            | 0.00          | 14.33           | 18.11        | \$990,174.98              |
| 2022   | 74,981  | 33.09            | 0.00          | 14.61           | 18.48        | \$1,009,975.51            |
| 2023   | 76,481  | 33.75            | 0.00          | 14.91           | 18.85        | \$1,030,180.14            |
| .2024. | 7.8,011 | 34.43            | 0.00          | 15.20           | 19.22        | \$1,050,788.87            |
| 2025   | 79,571  | 35.11            | 0.00          | 15.51           | 19.61        | \$1,071,801.68            |
|        | Total   | 321.73           | 0.00          | 142.08          | 179.65       | \$9,820,123.09            |

**Societal Cost of Expected Collisions** = 0.00 x 1,582,000 + 142.08 x 59,000 + 179.65 x 8,000

= \$9,820,123.09

Average Cost of Total Expected Collisions = \$9,820,123.09/321.73 = \$30,522.84

### Reduction in Collisions after Implementing Speed Feedback Signs (CMF = 0.88)

Expected Reduction in collisions = 321.73 x (1 – CMF)

= 38.61

**Monetary Benefits** = 38.61 x \$30,522.84 = \$1,178,486.85

Construction Cost = \$12,500 x 8

= \$100,000

B/C = 11.78

### Illumination

The CMF for this countermeasure is 0.97, and the construction cost is \$100,000 per site for a service life of 20 years.

Collision rate of total collisions in collisions per 100 million vehicles kilometres based on historical collision data (2008 – 2015):

### **Benefit-Cost Analysis**

| Year              | AADT   | Number of Total Collisions              | Collision Rate |
|-------------------|--------|-----------------------------------------|----------------|
| 2008              | 45,748 | 43                                      | 31.79          |
| 2009              | 55,261 | 37                                      | 22.65          |
| 2010              | 59,123 | 51 - 51 - 51 - 51 - 51 - 51 - 51 - 51 - | 29.18          |
| 2011              | 60,305 |                                         | 39.82          |
| 2012              | 61,511 | 67                                      | 36.84          |
| 2013              | 62,741 | 80                                      | 43.13          |
| 2014              | 63,996 | 71                                      | 37.53          |
| 2015 <sup>2</sup> | 65,276 | 54                                      | 48.17          |
|                   | :      | Average of Collision Rate               | 36.14          |

Estimate of number of total collisions likely to occur based on the historical collision rate (36.14 collisions per 100 million vehicles kilometres) and societal cost of collisions without implementing illumination during next 20 years (service life of illumination). 2015 is the assumed implementation year. The proportions of different severity collisions of total collisions shown in the header of the following table are based on the actual experienced during the history period.

| Year | AADT   | Total Collisions | Fatal (0.84%) | Injury (43.25%) | PDO (55.91%) | Expected<br>Societal Cost |
|------|--------|------------------|---------------|-----------------|--------------|---------------------------|
| 2016 | 66,582 | 71.14            | 0.60          | 30.77           | 39.77        | \$3,083,123.33            |
| 2017 | 67,914 | 72.56            | 0.61          | 31.38           | 40.57        | \$3,144,802.46            |
| 2018 | 69,272 | 74.01            | 0.62          | 32.01           | 41.38        | \$3,207,685.55            |
| 2019 | 70,657 | 75.49            | 0.64          | 32.65           | 42.21        | \$3,271,818.88            |
| 2020 | 72,070 | 77.00            | 0.65          | 33.30           | 43.05        | \$3,337,248.78            |
| 2021 | 73,511 | 78.54            | 0.66          | 33.97           | 43.91        | \$3,403,975.23            |
| 2022 | 74,981 | 80.11            | 0.68          | 34.65           | 44.79        | \$3,472,044.55            |
| 2023 | 76,481 | 81.72            | 0.69          | 35.34           | 45.68        | \$3,541,503.04            |
| 2024 | 78,011 | 83.35            | 0.70          | 36.05           | 46.60        | \$3,612,350.69            |
| 2025 | 79,571 | 85.02            | 0.72          | 36.77           | 47.53        | \$3,684,587.52            |
| 2026 | 81,162 | 86.72            | 0.73          | 37.50           | 48.48        | \$3,758,259.82            |
| 2027 | 82,785 | 88.45            | 0.75          | 38.25           | 49.45        | \$3,833,413.91            |
| 2028 | 84,441 | 90.22            | 0.76          | 39.02           | 50.44        | \$3,910,096.08            |
| 2029 | 86,130 | 92.02            | 0.78          | 39.80           | 51.45        | \$3,988,306.33            |
| 2030 | 87,853 | 93.87            | 0.79          | 40.60           | 52.48        | \$4,068,090.98            |

<sup>&</sup>lt;sup>2</sup> 2015 Collision data is only from the first 7 months (1/1/2015 – 23/07/2015)

### **Benefit-Cost Analysis**

| Year   | AADT   | Total Collisions | Fatal (0.84%) | Injury (43.25%) | PDO (55.91%) | Expected<br>Societal Cost |
|--------|--------|------------------|---------------|-----------------|--------------|---------------------------|
| 2031   | 89,610 | 95.74            | 0.81          | 41.41           | 53.53        | \$4,149,450.02            |
| 2032   | 91,402 | 97.66            | 0.82          | 42.24           | 54.60        | \$4,232,429.76            |
| 2033 - | 93,230 | 99.61            | 0.84          | 43.08           | 55.69        | \$4,317,076.50            |
| 2034   | 95,095 | 101.60           | 0.86          | 43.94           | 56.80        | \$4,403,436.56            |
| 2035   | 96,997 | 103.64           | 0.87          | 44.82           | 57.94        | \$4,491,509.92            |
|        | Total  | 1728.47          | 14.59         | 747,54          | 966.34       | \$74,911,209.91           |

Societal Cost of Expected Collisions = 14.59 x 1,582,000 + 747.54x 59,000 + 966.34x 8,000

= \$74,911,209.91

Average Cost of Total Expected Collisions = \$74,911,209.91/11728.47= \$43,339.66

Reduction in Collisions after Implementing Rumble Strips (CMF = 0.97)

Expected Reduction in collisions = 1728.47 x (1 – CMF)

= 51.85

**Monetary Benefits** = 51.85 x \$43,339.66 = \$2,247,336.30

Construction Cost =  $$100,000 \times 8.1$ 

= \$810,000

B/C = 2.77

### **Provide Permanent Recessed Pavement Markings**

The CMF for this countermeasure is 0.67, and the construction cost is \$19,000 per km of length for a service life of 5 years.

Collision rate of total night collisions in collisions per 100 million vehicles kilometres based on historical collision data (2008 – 2015):

### **Benefit-Cost Analysis**

| Year              | AADT   | Number of Total Collisions | Collision Rate |
|-------------------|--------|----------------------------|----------------|
| 2008              | 45,748 | 7                          | 10.22          |
| 2009              | 55,261 | 9                          | 10.88          |
| 2010              | 59,123 | 9                          | 10.17          |
| 2011              | 60,305 |                            | 12.19          |
| 2012              | 61,511 | 12                         | 13.04          |
| 2013              | 62,741 | 22                         | 23.43          |
| 2014              | 63,996 | 19                         | 19.84          |
| 2015 <sup>3</sup> | 65,276 | 6                          | 6.14           |
|                   |        | Average of Collision Rate  | 13.24          |

Estimate of number of total collisions likely to occur based on the historical collision rate (13.24 collisions per 100 million vehicles kilometres) and societal cost of collisions without implementing permanent raised pavement markings during next 5 years (service life of PRPM). 2015 is the assumed implementation year. The proportions of different severity collisions of total collisions shown in the header of the following table are based on the actual experienced during the history period.

| Year | AADT   | Total Collisions | Fatal (2.11%) | Injury (26.32%) | PDO (71.58%) | Expected<br>Societal Cost |
|------|--------|------------------|---------------|-----------------|--------------|---------------------------|
| 2016 | 66,582 | 13.19            | 0.28          | 3.47            | 9.44         | \$719,727.60              |
| 2017 | 67,914 | 13.46            | 0.28          | 3.54            | 9.63         | \$734,126.04              |
| 2018 | 69,272 | 13.72            | 0.29          | 3.61            | 9.82         | \$748,805.54              |
| 2019 | 70,657 | 14.00            | 0.29          | 3.68            | 10.02        | \$763,776.89              |
| 2020 | 72,070 | 14.28            | 0.30          | 3.76            | 10.22        | \$779,050.92              |
|      | Total  | 68.65            | 1.45          | 18.07           | 49.14        | \$3,745,486.99            |

Societal Cost of Expected Collisions = 1.45 x 1,582,000 + 18.07 x 59,000 + 49.14 x 8,000

= \$3,745,486.99

Average Cost of Total Expected Collisions = \$3,745,486.99/49.14 = \$54,557.89

Reduction in Collisions after Implementing Speed Feedback Signs (CMF = 0.67)

**Expected Reduction in collisions** =  $68.65 \times (1 - CMF)$ 

= 22.66

 $<sup>^{3}</sup>$  2015 Collision data is only from the first 7 months (1/1/2015 - 23/07/2015)

### Benefit-Cost Analysis

Monetary Benefits = 22.66 x \$54,557.89 = \$1,236,010.71

Construction Cost = \$247,000.00

B/C = 5.00



3027 Harvester Road, Suite 400 Burlington, ON L7N 3G7 CANADA T. 289.288.0287 F. 289.288.0285

www.cima.ca



### CITY OF HAMILTON

### PUBLIC WORKS DEPARTMENT Corporate Assets and Strategic Planning Division

| TO:                | Chair and Members Public Works Committee                                                                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMMITTEE DATE:    | April 4, 2016                                                                                                                                                                |
| SUBJECT/REPORT NO: | Hamilton Strategic Road Safety Program Update (PW16027) (City Wide) (Outstanding Business List Item)                                                                         |
| WARD(S) AFFECTED:  | City Wide                                                                                                                                                                    |
| PREPARED BY:       | David Ferguson Superintendent, Traffic Engineering 905-546-2424 Extension 2433 Martin White, C.E.T., Manager Traffic Operations and Engineering, 905-546-2424 Extension 4345 |
| SUBMITTED BY:      | Geoff Lupton Director, Energy, Fleet & Traffic Public Works Department                                                                                                       |
| SIGNATURE:         |                                                                                                                                                                              |

#### RECOMMENDATION

- (a) That the Hamilton Strategic Road Safety Program for 2016, as described in Appendix F to Report PW16027, be endorsed;
- (b) That the Hamilton Strategic Road Safety Program's Mission, Vision and Goal's be revised to include a third goal, "That the Hamilton Strategic Road Safety Program supports the Principals and Values of Vision Zero";
- (c) That the Senior Project Manager, Traffic Roadway Safety, currently funded for a three year period ending in 2017, be confirmed as a full time permanent position in the 2018 budget process with the position continuing to be funded from the Red Light Camera Reserve 112203 with no impact on the municipal tax levy;
- (d) That the Vision Zero Comprehensive Plan to Improve Road Safety Motion be identified as complete and removed from the Public Works Committee Outstanding Business List.

#### **EXECUTIVE SUMMARY**

On August 15, 2014 City Council approved the Public Works Committee report PW14090 - Re-establishment of the Hamilton Strategic Road Safety Program (HSRSP). With this report Council approved the following:

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 2 of 18

- (a) That Council endorse the re-establishment of the City of Hamilton's, Hamilton Strategic Road Safety Program (RSRSP) as outlined in Report PW14090 and the reformation of the Hamilton Strategic Road Safety Committee;
- (b) That all excess Red Light Camera (RLC) program fine revenues not required to build, operate, manage or maintain existing or future Red Light Camera sites, be allocated to road safety initiatives, as supported by the principles of the Hamilton Strategic Road Safety Program outlined in this report;
- (c) That a Senior Traffic Safety Technologist be hired on a contract basis and funded from the Red Light Camera Reserve (112203) with no impact to the municipal tax levy;
- (d) That the Senior Traffic Safety Technologist be hired for a contract term of three years;
- (e) That staff report back to Committee prior to completion of the contract term on the cost and benefits realized with this new position;
- (f) That \$545,000 be allocated from the Red Light Camera Reserve (112203) to fund 2014 safety initiatives as outlined in Report PW14090;
- (g) That the Hamilton Strategic Road Safety Committee report on the progress and results of the Hamilton Road Safety Program annually through the Public Works Committee.

The purpose of this report is to provide:

An update on the Hamilton Strategic Road Safety Program as of year-end 2015. Provide the rationale for converting the Senior Project Manager, Traffic Roadway Safety from a contract position to a permanent FTE with no impact to the Levy.

To seek Councils endorsement of the proposed HSRSP initiatives for 2016 outlined in this report.

Council's approval to incorporate the principles of Vision Zero as an additional goal added to the HSRSP. This is in response to a City Council passed Motion on February 26, 2016 related to Vision Zero – Comprehensive Plan to Improve Road Safety.

Funding for all the roadway safety projects is financed by revenues realized from the Red Light Camera Program, itself a sustainable roadway safety program. Currently there is approximately \$9.5 million dollars accumulated in the reserve. These funds were committed by Council in report PW07116 "That all excess Red Light Camera Program fines revenues not required to build, operate or maintain existing or future Red Light Camera sites be allocated to road safety initiatives, as supported by the Hamilton Strategic Road Safety Program, subject to maintaining a minimum balance of \$100,000 in the Red Light Camera Reserve 112203". This is at no impact to the municipal tax levy.

#### Hamilton Strategic Road Safety Committee

The Hamilton Strategic Road Safety Committee was re-convened on March 18, 2015. The committee is comprised of staff members from Hamilton Police Services, Public Health Services, Traffic Operations & Engineering, Transportation, and Communications. In addition, consultation has been held with multiple school boards, and the Seniors Advisory Committee. The goal of the Committee is to provide guidance, oversight and direction to the Hamilton Strategic Road Safety Program; to ensure additional stakeholder input and consultation is sought; and to ensure that the Program includes Education, Enforcement and Engineering, together to reduce collisions and improve safety for all roadway users in Hamilton. The Committee met eight times in 2015.

### Hamilton Strategic Road Safety Program Results

Table 1 below provides a summary of the activities completed as of year-end 2015. The total cost of the projects completed as part of the Hamilton Strategic Road Safety Program as of year-end 2015 was approximately \$1.55 million (\$532,000 of this total was spent in 2013 and 2014 on Ladder crosswalks). Therefore the City spend in 2015 was actually \$618,000 in 2015 on the Traffic Safety Initiatives listed below. Staff where able to complete some additional safety enhancements from the \$545,000 identified in in report PW14090. These initiatives were entirely funded from the Red Light Camera Reserve, with no impact to the levy.

Table 1 - Hamilton Strategic Roadway Safety Initiatives Completed as of Year-end 2015

| Project/Program                        | Results to Date                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Speed limit reductions to 40 km/hr  | <ul> <li>207 local roadway speed limit reductions to 40 km/hr primarily in School Safety Zones and on local residential roadways.</li> <li>Approximately 1,000 speed limit signs were installed at an approx. cost of \$200,000 (See Appendix A for locations).</li> </ul>                                                                                              |
| B. School Safety Zones                 | <ul> <li>60 School Area reviews and 110 School Safety Zones have been completed.</li> <li>40 intersections converted to all-way stops.</li> <li>The installation of all way stop control and school area signing cost about \$60,000.</li> <li>Speed reduction signing and school zone flasher costs are captured separately (See Appendix B for locations).</li> </ul> |
| C. New school zone flasher speed zones | <ul> <li>Three new school zone flasher speed zones were installed.</li> <li>Approximate cost of \$45,000 (See Appendix C for locations).</li> </ul>                                                                                                                                                                                                                     |

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 4 of 18

| Project/Program                                                | Results to Date                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. Ladder crosswalks                                           | <ul> <li>211 durable plastic ladder crosswalks have been installed across the City over the last three years (53 in 2013, 49 in 2014 and 109 in 2015).</li> <li>The total 3-year expenditure for this initiative was approx. \$1.1 million (2013 at \$276,000, 2014 at \$256,000, 2015 at \$568,000)</li> <li>Please see Appendix D for locations.</li> </ul> |
| E. Traffic Calming<br>Projects                                 | <ul> <li>17 temporary traffic calming projects completed.</li> <li>Installations include bump outs and knock down sticks and 19 temporary speed humps.</li> <li>Approximate cost \$100,000 (See Appendix E for locations).</li> </ul>                                                                                                                         |
| F. Emergency Detour<br>Routes (EDR)                            | <ul> <li>Red Hill Valley Parkway (RHVP) and Highway 403.</li> <li>Cost approximately \$15,000.</li> </ul>                                                                                                                                                                                                                                                     |
| G. Permissive vs. prohibitive signing review for Truck Routes. | <ul><li>Review completed</li><li>Study cost \$28,550.</li></ul>                                                                                                                                                                                                                                                                                               |
| H. Roadway safety adjustments                                  | <ul> <li>Such as Right Turn on Red signing for Seniors at<br/>Fennell and Upper Gage, and Mohawk and Upper<br/>Gage etc.</li> </ul>                                                                                                                                                                                                                           |

#### Senior Project Manager - Traffic Safety Engineering

In January 2015, the Senior Project Manager (SPM), Traffic Safety Engineering position was successfully filled on a three year contract basis. The incumbent has been instrumental in successfully initiating and guiding road safety staff and projects to date. In addition, with the growth of Traffic safety initiatives, this position will now be supervising nine staff in total. This position provides project supervision and coordination of the growing project list as described in this report. The SPM also works with other municipalities, the provincial government, Councillors and interest groups, seniors, school boards, and citizens in order to ensure Traffic Safety Engineering provides timely and accurate responses to meet the needs of the citizens of Hamilton and to meet the Mission, Vision and Goals of the HSRSP.

Staff recommends that the Senior Project Manager, Traffic Roadway Safety, currently funded for a three year period ending in 2017, be confirmed as a full time permanent position in the 2018 budget process and the position continue to be funded from the Red Light Camera Reserve 112203 with no impact on the municipal tax levy. The estimated annual salary and benefit cost for the position is \$120,000. In 2016, Traffic changed the Community Traffic Section into the Traffic Roadway Safety Section to recognize the shift in strategic priority to Roadway Safety as a primary focus.

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 5 of 18

### Hamilton Strategic Road Safety Program for 2016

A summary of the HSRSP projects for 2016 are listed in Appendix F and are described in detail below.

### 1.0 New Pedestrian Crossover Program

On January 1<sup>st</sup>, 2016, Bill 31 legislative amendments to the *Ontario Highway Traffic Act* (H.T.A.) sections 140 and 176 came into effect that will require drivers to stop and yield the entire roadway to pedestrians and school crossing guards before proceeding at designated pedestrian crossovers and school crossings. With these amendments to the *Ontario Highway Traffic Act*, the Province has introduced three new variations of the pedestrian crossover. These new crossing treatments will allow pedestrians to cross the road right-of-way under a greater number of conditions and will provide municipalities with a more cost effective solution to ensure pedestrian safety. These changes to the H.T.A. result in significant change to the Rules of the Road for Ontario and will help address initiatives identified in the Hamilton Strategic Road Safety Program to make roads safer for school children, pedestrians and school crossing guards.

The major change in legislation is for new pedestrian crossovers and school crossings. A motorist must now yield the right of way to the pedestrian and not proceed until the pedestrian has completely left the roadway. The Pedestrian, must also ensure that the vehicle has sufficient space to come to a stop before they proceed with their crossing.

For 2016 staff will continue to work with municipal partners and community groups to raise awareness of existing regulations. Staff will develop a Communication Plan that will include educational and marketing materials prior to installation of any new pedestrian crossovers.

The following conditions must be met in order for a Pedestrian Cross Over (PXO) to be implemented under the H.T.A.:

- Appropriate pedestrian and vehicle volumes
- Pedestrian facilities on both sides of the road that are maintained in the winter
- Appropriate sight lines
- Located within a roadway segment with a posted speed limit of 60 km/h or less
- Accessibility for Ontarians with Disabilities Act (AODA) compliant curb cut and sidewalk depressions at the crossing
- Not within 200 meters of another crossing control treatment (unless pedestrian and vehicle volumes are high and there is a requirement for system connectivity)
- Illuminated with street lighting matching Provincial standards for such treatments

It is anticipated that Traffic will implement an initial pilot project of three to five (3-5) P.X.O. crossings in 2016. There will be an Education Program associated with the installation of these pedestrian priority crossings. This programs estimated cost is \$100,000 in 2016 and approximately \$500,000 in 2017 with a full rollout of various

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 6 of 18

pedestrian crossings complete with LED fast flashing beacons, and/or appropriate signing and pavement markings, being implemented at candidate locations for the future.

### 2.0 School Zone Safety Program

The purpose of this program is to provide designated safe routes to school, focused on providing children a safer, calmer environment to commute and also to encourage walking and cycling modes of travel compatible with a safer healthy lifestyle. Under the supervision of the Senior Project Manager, Traffic Safety Engineering, a school safety review process was created in 2015. The process involves technical safety staff from Traffic Engineering, Public Health Services, school boards, and representatives from each school and the Parent Teacher Association. To date, 60 school zone reviews have been conducted leading to 250 streets having the speed limit reduced to 40 km/hr, school safety zones, new school zone flashers and new all way stops have been installed around schools. In addition, this program has been used to install a multitude of durable ladder crosswalks at locations on designated routes to and from school and at locations controlled by supervised school crossing guards. This program will continue to operate and grow until a review has been conducted on roadways in proximity to all schools in Hamilton (60 of 188 have been completed to date).

#### 3.0 Speed Limit Designation Review

The City of Hamilton along with other stakeholder Municipalities is working with the Provincial Government on an initiative to support a change in legislation to the *Highway Traffic Act* (H.T.A.) to enable Municipalities to reduce the default speed limit on municipal roadways to 40km/hr under the H.T.A., rather than existing 50km/hr as required under current legislation. In principal, this would allow Hamilton to reduce all local residential roadway speed limits to 40km/hr while signing all other designated collector and arterial roadways as 50km/hr or greater as required by roadway operating conditions, land use and roadway purpose.

Further consultation with the province, stakeholder municipalities and enforcement agencies including the Hamilton Police Services is required before this legislative change is enacted. It is not known at this time how long this process will take as it is in the initial stages of review by the Province. In the interim Hamilton has reduced the speed limit to 40 km/hr using speed limit signs on roadways within school safety zones, and on roadways in internal subdivisions where the speed limit of 40 km/hr is appropriate. These speed limit reductions can be installed concurrently with other traffic calming measures such as lane width reductions, bump outs speed bumps, bike lanes and other measures to control and calm the speed of vehicles. These individual reviews will continue until such time as the Province changes the existing H.T.A. legislation.

4.0 Red Light Camera and Intersection Safety Review.

As part of the Red Light Camera program Traffic recommended in report PW 14087 to install 6 new red light cameras. This report was subsequently approved at Council on August 16, 2014. In report PW 15073 approved by Council in October 2015 it was

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 7 of 18

further approved that approval be granted to continue to operate the Red Light Camera (RLC) Program in Hamilton through to the end of 2021. The Red Light Camera Program is a successful collision reduction program.

Collision statistics were reviewed at all existing red light camera locations over a 3 to 5 year period before and after the red light camera device was implemented. Based on the review of collision data, right-angle collisions on average have declined among the 12 intersections reviewed from a total of 133 collisions before installation to 74 collisions after. The total number of collisions at these locations has reduced from 439 collisions before installation to 363 collisions after installation. Staff also reviewed violations that the red light cameras have generated from the start of the program compared to current operation. It was noted that the average number of violations have declined from 6.9 violations/day to 3.5 violations/day from the start of the red light camera program in year 2000 to current operations. These numbers indicate that compliance has doubled since the inception of the red light camera initiative which contributes to improvements to the safe operation of the road network.

These statistics indicate that red light cameras are proving to be an effective tool in reducing right-angle and total collisions at locations where red light camera devices have been implemented. As part of the implementation of a red light camera, site specific characteristics are reviewed at each individual location including traffic signal amber and all-red clearance intervals. The amber and all red clearance intervals are calculated and based on roadway speed and intersection design which is a consistent practice throughout the City of Hamilton and the Province of Ontario. Vehicles that are travelling at a speed in close proximity to the posted speed limit would have sufficient space to come to a complete stop safely or if they are closer in proximity to the intersection be able to clear the intersection prior to the start of the all red phase. Overall, the Red Light Camera Program is responsible for a reduction in right-angle collisions. This indicates that this program is very successful in improving the safety and efficiency for road users in the City of Hamilton. Traffic staff will be reporting further to Public Works Committee and Council on the Red Light Camera Program in 2016.

### 5.0 New Permanent Traffic Calming Program

In 2016 Traffic will implement a new pilot program to remove temporary traffic calming features and construct permanent traffic calming features using hard surface materials asphalt and concrete. The estimated (Est.) total program budget for 2016 is \$120,000.

- Permanent bump out Locke @ Herkimer Est. \$20,000 (Ward 1)
- Centre Median Island Longwood @ Marion Est. \$20,000 (Ward 1)
- Two Speed humps Charlton near Kent Est. \$20,000 (Ward 1)
- Permanent speed humps on Forbes and Citino Est. \$20,000 (Ward 8)
- Permanent speed hump Highgate near Bankfield Est. \$10,000 (Ward 9)
- Permanent speed hump Winterberry Est. \$10,000 (Ward 9)
- Raised crosswalk Winterberry at trail crossing Est. \$20,000 (Ward 9)

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 8 of 18

6.0 New School Zone Flasher Upgrade and Replacement

Currently there are 69 School Zone Flashers in operation in Hamilton. A review has been conducted of the condition and age of the asset and it has been determined that almost all are out of date and are not compatible with current programming and operating technologies. Traffic recommends replacing these units over a five year period with School Zone Flashers that contain current programming technology and that can be integrated into the new Advanced Traffic Management Centre for control and monitoring and remote programming and operations. The annual budget cost per year for each of five years is \$120,000.

7.0 New Collision System Software Upgrade and Collision Report

The City has been operating the current Collision Software since 1999 and it is outdated. The current software requires each collision to be individually keyed into the system. Data extraction and collision summary is cumbersome and has to be conducted by dedicated staff. It is recommended that the City research and purchase a state of the art software for Collision record processing). The new State-of-the-Art analytical Collision reporting tools are quick and easy to use, while remaining highly flexible. They provide analytical tools; GIS map based information, collision reports, intersection and mid-block collision diagrams, problem area analysis and viewing. Most new collision system software packages can be installed on the desktop of all technical traffic staff as well as the Hamilton Police Services and any trained individual can create reports to suit their needs. The anticipated front end costs for purchase and set up of the system and licencing is approximately \$100,000. Annual License and processing fees are estimated to be approximately \$15,000 per year.

Upon upgrading the software, Traffic will be able to easily and relatively quickly run statistics and produce the Traffic Safety Status Collision Report, an annual collision report summarizing collision statistics in Hamilton. This report was last produced in 2010 and must be updated. This report and the statistics are paramount to measuring collision rates in Hamilton, comparing Hamilton rates to other municipalities and for monitoring collision rate reductions as a result of the actions of the Hamilton Strategic Road Safety Program.

8.0 Red Hill Valley Parkway (RHVP) and Lincoln Alexander Expressway (LINC) Vehicle Speed Monitoring

As Part of the Hamilton Strategic Road Safety Program, Traffic reported in report PW15091 respecting collision mitigation on the RHVP and The LINC and recommended a list of short term, medium and long term actions to reduce collisions. One of the recommendations to reduce collisions resulting from motorist speeding was to request additional Hamilton Police Services (HPS) speed and aggressive driving enforcement on these roadways. The Police have conducted speed enforcement over this winter and have observed that the incidents of speeding have reduced while Police are present. Traffic staff and HPS staff met in January 2016 to determine a permanent means for HPS to monitor the speed of traffic on the expressways. It was agreed that Traffic will utilize the new Advanced Traffic Management System technology and install

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 9 of 18

new speed monitoring cameras on the RHVP and the LINC and provide the HPS with a display of the images and recorded vehicle speeds, such that they can monitor expressway condition and provide enforcement based on real time conditions and observations. The estimated cost to provide the equipment and system monitoring is approximately \$200,000.

### 9.0 Continuation of Projects/ Programs for 2016

- Speed limit reductions to 40km/hr primarily in School Safety Zones and on local residential roadways (Est. budget \$200,000).
- School Area reviews and establish School Zones via the use of signs and markings (Est. budget \$60,000).
- Install school zone flasher speed zones (Est. budget \$75,000).
- Install approximately 125 durable plastic ladder crosswalks as required (Est. budget \$700,000). Ladder crosswalks consist of two conventional crosswalk lines that run parallel with the direction of pedestrian travel connected by alternating bands of reflective white plastic creating a "ladder like" appearance. The alternating pattern of white lines and darker pavement provides contrast and enhances the visibility of the crosswalk which increases conspicuity and driver awareness. The increased visibility of the crosswalk better defines the pedestrian area with the goal of improving safety and walkability. These markings, on average, last for approximately five years, while latex based markings average between six and twelve months (depending upon traffic conditions). While the life-cycle costs of the two materials are similar, the durability and efficacy of the MMA product is far superior and results in a better end-user experience.
- Traffic Calming temporary projects including: rubberized speed humps, bump outs, knock down sticks (Est. budget \$250,000).
- Emergency Detour Routes (EDR) installations on Hamilton roadways for the M.T.O. for the QEW EDR (Est. budget \$15,000).

#### 10.0 Other Traffic Safety Initiatives

Traffic Safety is the overall foundation of Traffic Engineering and staff undertakes projects and initiatives based on varying requests. Staff are working on completing the following initiatives listed below. The estimated budgeted for these other projects is \$150,000.

- Sherman Hub Study Area and partnership study with Mohawk College
- Safe Neighbourhoods Signage Program
- Recessed LED pavement markers pilot project (Whitechurch Rd)
- Neighbourhood Traffic Calming reviews
- Initiatives related to addressing Age Friendly Issues within the City of Hamilton

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 10 of 18

- Arterial radar message boards which is administered by Hamilton Police Services as well as the local neighbourhood radar boards which is administered by Traffic Engineering staff
- Safety requests from the public and Councillors

11.0 Vision Zero – Comprehensive Plan to Improve Road Safety

Vision Zero is the 1997 Swedish approach to road safety thinking. It can be summarized in one sentence: No loss of life is acceptable. The Vision Zero approach has proven highly successful and has been adopted by City's such as the City of Edmonton and New York City and a number of other Municipalities in the United States.

At City Council on February 26, 2016, Council passed a Motion respecting Vision Zero, directing staff as follows:

That the General Manager of Public Works be directed, in consultation with other City Departments, as appropriate, to report to the Public Works Committee in coordination with the Transportation Master Plan, with a comprehensive plan to improve road safety to include, but not be limited to, the following:

- (i) A review of best practice from comparable jurisdictions including Vision Zero;
- (ii) A review of existing City policies, strategies and guidelines respecting road safety;
- (iii) An enhanced analysis of city-wide traffic collision data;
- (iv) Specific recommendations to improve road safety, particularly for pedestrians, cyclists and motorists, over the short term, medium and long terms;
- (v) An implementation plan and funding strategy, as appropriate;
- (vi) A regular reporting mechanism and track progress;
- (vii) Continued consultation with the Hamilton Cycling Committee, Hamilton Wentworth District School Board, Hamilton Wentworth Catholic District School Board and all other educational entities in the city of Hamilton who wish to participate; to include but not be limited to the Hamilton Catholic French District School Board, the Hamilton French District School Board, Mohawk College, McMaster University, and Redeemer College University, Public Health Services, Hamilton Police Services, Cycle Hamilton, the Advisory Committee for Persons with Disabilities, the Agriculture & Rural Affairs Advisory Committee and the Seniors Advisory Committee; and,
- (viii) The creation of a Road Safety Task Force is to be led by the Public Works Department.

The principles outlined in items (ii) through (viii) of the motion are incorporated into the Hamilton Strategic Road Safety Program. Please refer to Table 2 below for staff's responses to how they believe the HSRSP currently addresses motion items (ii) through (viii). Staff responses are in Italic.

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 11 of 18

Table 2 - Staff Responses to Motions (ii) through (viii)

 (ii) A review of existing City policies, strategies and guidelines respecting road safety;

The Hamilton Strategic Road Safety Program and subsequently the Hamilton Strategic Road Safety Committee were formed in 2007 by direction of City Council (PW07116). Subsequently in August 2014, Council approved report PW14090 to reestablish this Strategic and comprehensive plan to improve road safety. Most other significant Canadian and North American Municipalities have similar programs to Hamilton; some are modelled after the Hamilton Strategic Road Safety Program which was one of the first programs of its kind in Ontario.

(iii) An enhanced analysis of city-wide traffic collision data;

Item 7.0 New Collision System Software Upgrade and Collision Report of the Hamilton Strategic Road Safety Program for 2016 speak to this item. Upgrading the City current software, will enable easily and relatively quickly run statistics and produce the Traffic Safety Status Collision Report, an annual collision report summarizing collision statistics in Hamilton. Commencing in 2016, Hamilton will reintroduce the Annual Traffic Safety Status Report as well high incident collision locations will be identified for collision reduction treatments. These reports will provide enhanced analysis of city-wide traffic collision data. The reports and the statistics are paramount to measuring collision rates in Hamilton, comparing Hamilton rates to other municipalities and for monitoring collision rate reductions as a result of the actions of the Hamilton Strategic Road Safety Program.

A review of current collision trends shows that in general collision and fatality statistics over the past 25 years are in a downward trend. The implementation of Collision reduction measures on a holistic City wide basis only commenced in 2015. The statistics will need to be reviewed annually to determine the success of these programs in the coming years. Please refer to Appendix G for a 25 year Collision history of Total Collisions, Fatal and Injury Collisions in Hamilton.

(iv) Specific recommendations to improve road safety, particularly for pedestrians, cyclists and motorists, over the short term, medium and long terms;

This report contains specific recommendations to improve road safety for all roadway users over the short term, medium and long terms. Other initiatives from the Traffic Section of public works such as the Red Light Camera program and the Bicycle Route Master Plan implementation also are designed as long term strategies for improved safety and mobility in Hamilton. The City of Hamilton also has other strategies that have road safety components built into them, The Pedestrian Mobility Plan, the Traffic Calming Plan, the Transportation Master Plan, all support roadway safety and mobility in Hamilton.

(v) An implementation plan and funding strategy, as appropriate; Funding for all the roadway safety projects is financed by revenues realized from the Red Light Camera Program, itself a sustainable roadway safety program. Currently

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 12 of 18

there is approximately \$9.5 million dollars accumulated in the reserve. These funds were committed by Council in report PW07116 "That all excess Red Light Camera Program fines revenues not required to build, operate or maintain existing or future Red Light Camera sites be allocated to road safety initiatives, as supported by the Hamilton Strategic Road Safety Program, subject to maintaining a minimum balance of \$100,000 in the Red Light Camera Reserve 112203". This is at no impact to the municipal tax levy.

(vi) A regular reporting mechanism and track progress;

The Hamilton Strategic Road Safety Committee is required to report on the progress and results of the Hamilton Road Safety Program annually through the Public Works Committee.

(vii) Continued consultation with the Hamilton Cycling Committee, Hamilton Wentworth District School Board, Hamilton Wentworth Catholic District School Board and all other educational entities in the city of Hamilton who wish to participate; to include but not be limited to the Hamilton Catholic French District School Board, the Hamilton French District School Board, Mohawk College, McMaster University, and Redeemer College University, Public Health Services, Hamilton Police Services, Cycle Hamilton, the Advisory Committee for Persons with Disabilities, the Agriculture & Rural Affairs Advisory Committee, and the Seniors Advisory Committee; and,

The Hamilton Strategic Road Safety Committee is comprised of membership from Traffic, Transportation, Communications, Hamilton Police Services, and Public Health Services. In addition, consultation has been held with the school boards, local school staff and various Parent Teacher groups, and the Seniors Advisory Committee and the Social Planning and Research Council of Hamilton. Continued consultation with the Hamilton Cycling Committee, Hamilton Wentworth District School Board, Hamilton Wentworth Catholic District School Board and all other educational entities in the city of Hamilton who wish to participate; the Hamilton Catholic French District School Board, the Hamilton French District School Board, Mohawk College, McMaster University, and Redeemer College University, Public Health Services, Hamilton Police Services, Cycle Hamilton, the Advisory Committee for Persons with Disabilities, the Agriculture & Rural Affairs Advisory Committee, and the Seniors Advisory Committee will be arranged in 2016.

In addition, staff from Hamilton Traffic are members of the Road Safety Committee of Ontario (ROSCO) made up of professional Traffic Engineering staff from Hamilton, Waterloo Region, Richmond Hill, North Bay, Mississauga, Durham, Halton, Peel, Kitchener, Oakville, Brampton, Ottawa, London, Milton, Niagara, Toronto, York, Ministry of Transportation (Ontario), Consultant companies. Together these members exchange ideas, programs and best practices to improve road safety on roadways in Ontario. Hamilton is regarded as a leader in roadway safety within this group. Hamilton is also a voting member of the TAC (Transportation Association of Canada) Road Safety Standing Committee.

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 13 of 18

(viii) The creation of a Road Safety Task Force is to be led by the Public Works Department.

The Hamilton Strategic Road Safety Committee was re-convened on March 18, 2015. The committee is comprised of staff members from Hamilton Police Services, Public Health Services, Traffic Operations & Engineering, Transportation, and Communications as its core membership. In addition, consultation has been held with multiple school boards, and the Seniors Advisory Committee. The goal of the Committee is to provide guidance, oversight and direction to the Hamilton Strategic Road Safety Program and to ensure that additional stakeholder input and consultation is sought for specific program development. The Committee is to ensure that the Program includes Education, Enforcement and Engineering are considered together to reduce collisions and improve safety for all roadway users in Hamilton. The Committee met eight times in 2015.

The Roadway Safety Section of Traffic designs and implements the roadway safety plans such as those described in this report. These plans are discussed with the Hamilton Strategic Road Safety Committee who endorse and support the programs and provide multi departmental oversight over the projects and priorities.

#### Vision Zero, Vision, Mission and Goals

Vision Zero is the 1997 Swedish approach to road safety thinking. It can be summarized in one sentence: No loss of life is acceptable. The Vision Zero approach has proven highly successful and has been adopted by City's such as the City of Edmonton and New York City and a number of other Municipalities in the United States. Vision Zero, is based on the simple fact that people are human and humans make mistakes. The road system needs to keep us moving. But it must also be designed to protect road users at every turn.

The current Council approved Hamilton Strategic Road Safety Program (HSRSP) Vision, Mission and Goals are:

VISION: To have the best road safety record in Canada.

MISSION: To improve the quality of life of the citizens of Hamilton through a reduction in property damage and injury and death resulting from traffic collisions.

PRIMARY GOAL: Reduce fatal and injury collisions (combined), and property damage only collisions each by 10% every three year period.

SECONDARY GOAL: The City of Hamilton, Ontario be recognized as having the safest traffic record in Canada.

Staff suggests that the Hamilton Strategic Road Safety Program Vision, Mission and Values are already aligned with the Principals and Values of Vision Zero. To further link the HSRSP to Vision Zero, staff recommended that the Hamilton Strategic Road Safety Program Mission, Vision and Goals be revised to support the Principals and Values of Vision Zero. This will acknowledge the linked values and goals. Staff therefore

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 14 of 18

recommends revising the HSRSP goals to three distinct goals as outlined below which includes adding the specific new goal related to Vision Zero.

Hamilton Strategic Road Safety Program Goals:

- 1. Reduce fatal and injury collisions (combined), and property damage only collisions each by 10% every three year period.
- 2. The City of Hamilton, Ontario be recognized as having the safest traffic record in Canada.
- 3. That the Hamilton Strategic Road Safety Program supports the Principals and Values of Vision Zero.

### Alternatives for Consideration – See Page 17

### FINANCIAL - STAFFING - LEGAL IMPLICATIONS

Financial: The proposed funding model for all costs associated with the Hamilton Strategic Road Safety Program would be to utilize funds from the Red Light Camera Reserve Fund (112203). Funds from the municipal tax levy will not be required to support these programs.

### 2016 Budgeted Road Safety funds:

| New Pedestrian Crossover Program            | \$100,000   |
|---------------------------------------------|-------------|
| Public Safety and Education Campaign        | \$110,000   |
| Permanent Construction - Traffic Calming    | \$120,000   |
| School Zone Flasher Upgrade and Replacement | \$120,000   |
| Collision System Upgrade                    | \$100,000   |
| RHVP/LINC Speed Monitoring                  | \$200,000   |
| Speed Reduction signing                     | \$200,000   |
| School Zone signing                         | \$60,000    |
| School Zone Flasher Installation            | \$75,000    |
| Durable Ladder Crosswalks                   | \$700,000   |
| Temporary Traffic Calming                   | \$250,000   |
| EDR Installation                            | \$15,000    |
| Miscellaneous Safety requests               | \$150,000   |
| Total (Est.)                                | \$2,200,000 |
|                                             |             |

The Red Light Camera (RLC) Reserve (112203) currently accumulates average annual net revenue of approximately \$2,000,000. With the addition of six new Red Light Camera locations; this revenue is expected to climb to about \$2.5 million annually. At the time of this report the balance in the RLC Reserve was at \$9.5 million. Use of this fund to support safety initiatives would enable a proactive approach to the City of Hamilton's Strategic Road Safety Program.

Staffing: It is recommended that the Senior Project Manager, Traffic Roadway Safety, currently funded for a three year period ending in 2017, be confirmed as a full time

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 15 of 18

permanent position in the 2018 budget and the position continue to be funded (salary and benefit value \$120,000 per year) from the Red Light Camera Reserve 112203 with no impact on the municipal tax levy.

Legal: There are no Legal Implications from this report

#### HISTORICAL BACKGROUND

On August 15, 2014 City Council approved report PW14090 Re-establishment of the Hamilton Strategic Road Safety Program (City Wide). Shortly after the re-establishment of the Program, staff reconvened the Hamilton Strategic Road Safety Committee comprised of members of Traffic, Transportation, Communications, Hamilton Police Services, and Public Health Services. In addition, consultation has been held with multiple school boards, and Seniors Advisory Committee. The goal of the Committee is to provide guidance, oversight and direction to the Road Safety Program; to ensure additional stakeholder input and consultation is sought; and to ensure that the Program includes the 3E's (Education, Enforcement and Engineering) together to reduce collisions in Hamilton. The Committee has met eight times to date.

The Hamilton Strategic Road Safety Program (HSRSP) established the following Vision, Mission and Goals.

VISION: To have the best road safety record in Canada.

MISSION: To improve the quality of life of the citizens of Hamilton through a reduction in property damage and injury and death resulting from traffic collisions.

PRIMARY GOAL: Reduce fatal and injury collisions (combined), and property damage only collisions each by 10% every three year period.

SECONDARY GOAL: The City of Hamilton, Ontario be recognized as having the safest traffic record in Canada.

In report PW14090 it was reported that specific actions for emphasis areas identified by the HSRSP will be reviewed by staff and the committee and action plans will be established. Areas to be considered under the HSRSP can include:

- New pedestrian crossing program
- School zone safety program
- Speed limit designation review
- Vulnerable road user safety and education program
- Red light camera and intersection safety review
- Detailed collision analysis
- Road safety marketing and education campaign
- Aggressive driving
- Cyclist safety
- Transit/transit riders
- Winter weather
- Impaired driving
- Commercial vehicles

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 16 of 18

- Work zone safety
- Enhanced speed trailer initiative
- Pavement marking upgrade program
- Heavy truck traffic assessment and program evaluation
- Emergency detour routing administration and freeway management control
- Specialized safety initiatives and review that would further enhance road safety for all users.

The Mission and Vision of the Hamilton Traffic Road Safety Program is to make roadways throughout the City of Hamilton the safest throughout North America and to address safety for ALL road users, including vulnerable road users such as seniors and children and to reinvest Red Light Camera (RLC) revenue into safety initiatives in the Community.

Furthermore, in report PW14090 it was recommended that a Senior Traffic Safety Technologist be hired on a contract basis and funded from the Red Light Camera Reserve (112203) with no impact to the municipal tax levy.

Subsequent to the approval of the report in 2014, the Traffic Section of Public Works began to initiate the projects and items identified in the report. In January 2015 the position of Senior Project Manager, Traffic Safety Engineering was successfully filled on a three year contract basis. The incumbent has been instrumental in successfully initiating and guiding road safety staff and projects to date. In order for the entire scope of the Hamilton Strategic Road Safety Program to continue to be successful, this position is required to provide continuing oversight of the staff and growing project list as described in this report, provide research and to co-ordinate with other municipalities, provincial government, councillors and interest groups, seniors, school boards, and citizens in order to provide responsive Traffic Safety Engineering to meet the needs of the citizens of Hamilton and to meet the Mission, Vision and Goals of the HSRSP and also to ideologies such as Vision Zero.

#### POLICY IMPLICATIONS AND LEGISLATED REQUIREMENTS

N/A

#### RELEVANT CONSULTATION

The Hamilton Strategic Road Safety Committee is comprised of membership from Traffic, Transportation, Communications, Hamilton Police Services, and Public Health Services. In addition, consultation has been held with the school boards, local school staff and various Parent Teacher groups, and the Seniors Advisory Committee and the Social Planning and Research Council of Hamilton. Continued consultation with the Hamilton Cycling Committee, Hamilton Wentworth District School Board, Hamilton Wentworth Catholic District School Board and all other educational entities in the city of Hamilton who wish to participate; the Hamilton Catholic French District School Board, the Hamilton French District School Board, Mohawk College, McMaster University, and Redeemer College University, Public Health Services, Hamilton Police Services, Cycle Hamilton, the Advisory Committee for Persons with Disabilities, the Agriculture & Rural

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 17 of 18

Affairs Advisory Committee, and the Seniors Advisory Committee will be arranged in 2016.

#### ANALYSIS AND RATIONALE FOR RECOMMENDATION

The goal of any road safety program is to improve safety and to reduce the number of collisions that occur on municipal roadways and to reduce the social, economic impacts that occur as a result of motor vehicle collisions and the overall safety of all road users including pedestrians and cyclists.

Collision and Fatality Impacts

The impacts of collisions and fatalities far exceed the time and costs which are incurred at the time of the incident. Collisions and fatalities impact families, friends and often whole communities in a negative manner.

In 2007, the Transportation Association of Canada published a report on the Analysis and Estimation of the Social Cost of Motor Vehicle Collisions in Ontario. This report outlines that motor vehicle collisions generated \$18 billion in social costs in Ontario. Across all collision severities, the average social cost of a collision in Ontario is approximately \$77,000. The average cost/incident based on severity is as follows:

- Fatality \$13,600,000
- Major Injury \$280,000
- Minor Injury \$48,000
- Minimal Injury \$18,000

Social Costs include an extensive number of factors including, traffic delays, damage to property, legal fees, funeral costs, insurance costs, pollution costs, out of pocket expenses, hospital/health care; tow trucks, EMS, lost wages, future earnings.

No amount of money could compensate any family who loses a family member or has a family member that is seriously injured in a collision. It is the goal of the Hamilton Strategic Road Safety Program to reduce and eliminate fatal collisions and reduce overall collision numbers to as low as possible.

Approval of this report emphasises the City of Hamilton's commitment to collision reduction providing and improving roadway safety for all road users

#### ALTERNATIVES FOR CONSIDERATION

Council has made significant investments into improving road safety for all users through the re-establishment of the Hamilton Strategic Road Safety Program, the Committee and through other initiatives such as the Red Light Camera program and the Bicycle Route Master Plan. The Pedestrian Mobility Plan, the Traffic Calming Plan, the Transportation Master Plan. The Hamilton Strategic Road Safety Program is funded from Red Light Camera Reserve 112203". This is at no impact to the municipal tax levy.

The City of Hamilton could choose to modify program, through modifying the funding model to either reduced or increased its investment. Reductions in funding, would lead

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

### SUBJECT: Hamilton Strategic Road Safety Program Update (City Wide) (PW16027) Page 18 of 18

to a reduction in the number of safety initiatives implemented an increase in funding could potentially require additional staffing resources to meet program expectations.

A modified funding which model decreased program investment could negatively impact the overall success of the Hamilton Strategic Road Safety Program and slow the progress in implementing various safety enhancements. It could also impact Council's 2012 - 2015 Strategic Plan, Strategic Priority #1 and Strategic Priority #2 by reducing the service to a Prosperous and Healthy Community and reducing the Priority for Valued and Sustainable Services.

#### ALIGNMENT TO THE 2012 - 2015 STRATEGIC PLAN

### Strategic Priority #1

A Prosperous & Healthy Community

WE enhance our image, economy and well-being by demonstrating that Hamilton is a great place to live, work, play and learn.

#### Strategic Objective

- 1.2 Continue to prioritize capital infrastructure projects to support managed growth and optimize community benefit.
- 1.5 Support the development and implementation of neighbourhood and City wide strategies that will improve the health and well-being of residents.

### Strategic Priority #2

Valued & Sustainable Services

WE deliver high quality services that meet citizen needs and expectations, in a cost effective and responsible manner.

### Strategic Objective

- 2.2 Improve the City's approach to engaging and informing citizens and stakeholders.
- 2.3 Enhance customer service satisfaction.

#### APPENDICES AND SCHEDULES ATTACHED

Appendix A – 40 KMH Speed Limits Installed in 2016

Appendix B – School Safety Reviews Completed in 2016

Appendix C - All School Zone Flashers in Hamilton

Appendix D – Ladder Crosswalks 2013 - 2015

Appendix E – All Temporary Speed Humps in Hamilton

Appendix F – 2016 Budgeted Road Safety Initiatives

Appendix G – Motor Vehicle Collision History – 1991 TO 2015

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork



### **INFORMATION UPDATE**

| то:                | Mayor Fred Eisenberger and<br>Members of City Council                                  |
|--------------------|----------------------------------------------------------------------------------------|
| DATE:              | May 11, 2016                                                                           |
| SUBJECT/REPORT NO: | LINC/RHVP Safety Improvements (Wards 4, 5, 6, 7, 8 and 9)                              |
| WARD(S) AFFECTED:  | Wards 4, 5, 6, 7, 8 and 9                                                              |
| SUBMITTED BY:      | Geoff Lupton Director of Corporate Assets & Strategic Planning Public Works Department |
| SIGNATURE:         |                                                                                        |

At the December 9<sup>th</sup>, 2015 Council meeting, Council approved report PW15091 directing staff to implement the short-term safety options identified in Appendix C to PW Report 15-016 on the Redhill Valley Parkway (RHVP) and Lincoln Alexander Expressway (LINC) to improve safety and reduce collisions. The recommendations are as follows:

- (a) That the General Manager of Public Works be directed to implement the shortterm safety options identified in Appendix A and that these options be funded from the Red Light Camera Reserve (112203) and that staff be directed to report back to Public Works Committee on the results;
- (b) That the design with request to the medium and long term items in Appendix B be deferred pending the outcome of the Transportation Master Plan (TMP) update;
- (c) That a request be made to the Hamilton Chief of Police and the Hamilton Police Services Board to undertake regular speed and aggressive driving enforcement on the Lincoln M. Alexander Parkway (LINC) and the Red Hill Valley Parkway (RHVP) and that they be requested to report back to Council annually on the results;
- (d) That a copy of PW15091 report be provided to the Joint Stewardship Board of the Red Hill Valley for information.

Staff has completed an implementation plan to complete the approved Short term works over the summer of 2016. As these works will require various lane closures, involve various departments and multiple contractors, staff are proposing the closure of both the RHVP and LINC over a weekend in July and possibly some night closures to complete the works. The closure is required to protect workers and keep costs to minimum while completing the improvements as quickly as possible. This is a similar approach to what the City of Hamilton used previously for the LINC to complete regular maintenance. The specific date(s) have yet to be determined and more details will be provided once an implementation plan is completed. During the closure, staff will be coordinating for the following works to be completed.

OUR Vision: To be the best place in Canada to raise a thild, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

| Improvement/Safety Enhancements                                                                                   | Completion Date |
|-------------------------------------------------------------------------------------------------------------------|-----------------|
| Trim Vegetation on on-ramps, Queenston Rd. and Barton St.                                                         | July Closure    |
| Install Oversized Speed Limit Signs                                                                               | July Closure    |
| Install "Slippery When Wet" Signs                                                                                 | June 2016       |
| Install "Merge" and "Bridge Ices" Signs                                                                           | June 2016       |
| Upgrade Guiderail end treatments                                                                                  | July Closure    |
| Install, replace or trim vegetation obscuring signs at Guiderail End Treatments                                   | July Closure    |
| Install Digital Speed Feedback Signs                                                                              | September 2016  |
| Install Permanent Raised Pavement Markings from Greenhill to QEW                                                  | July Closure    |
| Install Object Marker signs on Guiderail End Treatments                                                           | June 2016       |
| Install Advance Diagrammatic Sign on Rousseaux on-ramp west of Mohawk Road                                        | July Closure    |
| Install Advance sign with Advance Right Lane Exits, Next Lane Exit or Through sign between Hwy 403 and Mohawk Rd. | July Closure    |
| Install Speed Fine Information Signs                                                                              | July Closure    |
| Install Permanent Raised Pavement Markings from Greenhill to QEW                                                  | July Closure    |

Staff has been working in partnership with Hamilton Police Services investigating various types of digital radar feedback signs that would meet the needs of both organizations. The new digital information radar feedback signs will be controlled through the Traffic Management Centre and will provide notifications to Hamilton Police Services of the Operating speeds along both roadways so they can deploy enforcement resources as needed. Hamilton Police Service has been conducting regular enforcement on both the RHVP and the LINC and over a 4 month period have issued over 1600 violations. This new system, which is to be installed in September of 2016, will allow the City and Hamilton Police Services with the ability to monitor vehicle speeds efficiently and deploy resources as needed.

The approved recommendations also identified the need to review and implement a Queue —End Warning System, Rain Activated- "Slippery When Wet" Flashing Beacons and a Variable Speed Limit on the RHVP and LINC. Traffic Engineering will be retaining a consultant to review, recommend and design systems to address these three items. It is expected these items would become activated in the spring of 2017.

Report PW 15-016 identified the installation of rumble strips along the LINC as a long term implementation (6+ years). Public Works Committee and Council provided further direction to staff to undertake a feasibility review of Rumble Strips on the LINC between Highway 403 and the RHVP, with special attention paid to Noise implications. Transportation Planning and Engineering Services is currently conducting this feasibility review and will be reporting to a future Public Works Committee meeting in 2016.

In addition to safety improvements, a new signing plan will be installed for the Upper Redhill Valley Parkway. This will include oversized ground mounted signs and replacement of various overhead signs on the RHVP and LINC to coincide with the opening of the new section of roadway in 2016.

If you require further information on this matter, please contact Martin White, Manager of Traffic Operations and Engineering at extension 4345.

## Copy to:

Chris Murray, City Manager
John Mater, Acting General Manager, Public Works
Rose Caterini, City Clerk, General Manager's Office
Lauri Leduc, Legislative Coordinator, General Manager's Office
Mike Zegarac, General Manager, Finance & Corporate Services
Anna Apkarian, Manager of Finance & Administration, Public Works
Jen Recine, Senior Communications Officer, City Manager's Office
Kwab Ako-Adjei, Policy & Public Affairs Advisor, City Manager's Office
Martin White, Manager, Traffic Operations & Engineering, Public Works
Dave Ferguson, Superintendent of Traffic Engineering, Public Works
Kris Jacobson, Superintendent of Traffic Services, Public Works
Kim Wyskiel, Superintendent of Traffic Services, Public Works



## INFORMATION UPDATE

| TO:                | Mayor Fred Eisenberger and Members of City Council                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| DATE:              | May 20, 2016                                                                                                                        |
| SUBJECT/REPORT NO: | The Lincoln M. Alexander Parkway (LINC) & Red Hill Valley Parkway (RHVP) Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) (CASP1615) |
| WARD(S) AFFECTED:  | Wards 4, 5, 6, 7, 8 and 9                                                                                                           |
| SUBMITTED BY:      | Geoff Lupton Director of Energy, Fleet & Traffic Public Works Department                                                            |
| SIGNATURE:         |                                                                                                                                     |

The purpose of this report is to advise Council of the anticipated implementation schedule for the short-term (0-2 years) traffic safety improvements identified for the Lincoln M. Alexander Parkway (LINC) & Red Hill Valley Parkway (RHVP). These measures were approved by Council on December 9, 2015 (PW15091). The short-term measures were identified in Appendix A of that report. These measures are to be funded from the Red Light Camera (RLC) Reserve (112203). Staff was also directed to report back to Public Works Committee on the results or impacts of these safety enhancements. Medium and long term safety items identified in Appendix B of the report were deferred pending the outcome of the Transportation Master Plan (TMP) update.

Implementation of most of the approved short-term safety items has been planned for the summer of 2016. The remaining short-term initiatives are planned for implementation in 2017. As these works involve various departments and multiple contractors, the recommended improvements will be implemented in stages over the next several months (beginning in June). Given the complexity of the work, full closures of both the RHVP and the LINC may be required during off-peak hours. Should full closures be required, appropriate notice will be provided to Council and the public well in advance.

Although the implementation of the various improvements requires significant coordination, staff anticipates undertaking the work in accordance with the following timing outlined in Table 1.

Table 1 - Short-Term Safety Enhancements/ Improvements for the LINC & RHVP

| Table 1 Cheft form carety Emignochierter improvemente ter                                                               | the Ente of Militi                                    |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Short-Term Safety Enhancements/ Improvements to be Implemented in 2016                                                  | Estimated<br>Completion Dates                         |
| Trim Vegetation on on-ramps, Queenston Rd. and Barton St.                                                               | June - July                                           |
| Install Oversized Speed Limit Signs                                                                                     | June - July                                           |
| Install "Slippery When Wet" Signs                                                                                       | June - July                                           |
| Install "Merge" and "Bridge Ices" Signs                                                                                 | June - July                                           |
| Install Speed Fine Information Signs                                                                                    | June - July                                           |
| Upgrade Guiderail End Treatments                                                                                        | September -<br>November                               |
| Install, replace or trim vegetation obscuring signs at Guiderail<br>End Treatments                                      | July - August                                         |
| Install Object Marker Signs on Guiderail End Treatments                                                                 | September -<br>November                               |
| Install Permanent Raised Pavement Markings from Greenhill to QEW                                                        | Timing pending pavement review. Possible resurfacing. |
| Install Advance Diagrammatic Sign on Rousseaux on-ramp west of Mohawk Road                                              | August – September*                                   |
| Install Advance Sign with Advance Right Lane Exits, Next<br>Lane Exit or Through Sign between Hwy 403 and Mohawk<br>Rd. | August – September*                                   |
| Installation of Signs Stating the Penalties and Costs Associated with Speeding.                                         | September - October                                   |
| * Timing is tentative - Coordination and approval is required from Min                                                  | istry of Transportation.                              |

<sup>\*</sup> Timing is tentative - Coordination and approval is required from Ministry of Transportation.

The remaining short-term safety enhancements identified in PW15091 require further analysis. These include the implementation of a Queue–End Warning System, Rain Activated – "Slippery When Wet" Flashing Beacons and a Variable Speed Limit on the LINC and RHVP. Staff will be retaining a consultant to review, recommend and design systems to address these three items. It is expected that these items would be implemented in 2017.

The Public Works Committee Report PW 15-016 also identified the installation of edgeline rumble strips along the LINC as a long term (6 plus years) implementation measure. Public Works Committee and Council provided further direction to staff to

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

undertake a feasibility review of rumble strips on the LINC between Highway 403 and the RHVP, with special attention to be given to noise implications. Engineering Services is reviewing this request and will be reporting back to a future Public Works Committee meeting in 2016.

In addition to these safety improvements, a signing plan has been designed and will be installed for the new Upper Red Hill Valley Parkway interchange. This will include oversized ground mounted signs and replacement of various overhead signs on the LINC and the RHVP to coincide with the opening of the new section of roadway in 2016.

Staff are currently working in partnership with Hamilton Police Services investigating various types of digital radar speed feedback signs that would meet the needs of both groups. The new digital information radar feedback signs will monitor vehicle speeds on the LINC and the RHVP and provide appropriate feedback to drivers through variable message signs. The new system would be controlled through the Traffic Management Centre and will provide notifications to Hamilton Police Services of the operating speeds along both roadways. This would enable the police to deploy selective enforcement resources as needed. Hamilton Police Services has been conducting regular enforcement on both the LINC and the RHVP and have issued over 1600 violations in four months. This new system will provide the City of Hamilton and Hamilton Police Services with the ability to monitor vehicle speeds efficiently and deploy resources as needed.

If you require further information on this matter, please contact Martin White, Manager of Traffic Operations and Engineering at extension 4345.

## Copy to:

Chris Murray, City Manager, City Manager's Office John Mater, Acting General Manager, Public Works Mike Zegarac, General Manager, Finance & Corporate Services Andrea McKinney, Director, Communications & Intergovernmental Affairs Rose Caterini, City Clerk, General Manager's Office Lauri Leduc, Legislative Coordinator, General Manager's Office Kelly Anderson, Manager of Communications Officer, City Manager's Office Anna Apkarian, Manager of Finance & Administration, Public Works Jen Recine, Senior Communications Officer, City Manager's Office Kwab Ako-Adjei, Policy & Public Affairs Advisor, City Manager's Office Martin White, Manager, Traffic Operations & Engineering, Public Works Dave Ferguson, Superintendent of Traffic Engineering, Public Works Kris Jacobson, Superintendent of Traffic Operations, Public Works Kim Wyskiel, Superintendent of Traffic Services, Public Works Betty Matthews-Malone, Director of Operations, Public Works Gary Moore, Director of Engineering Services, Public Works

SUBJECT: The Lincoln M. Alexander Parkway (LINC) & Red Hill Valley Parkway (RHVP) Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) (CASP1615) Page 4 of 4

Lorissa Skrypniak, Acting Manager, Transportation Management, Public Works Inspector Will Mason, Hamilton Police Services, Support Services Division

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork



## INFORMATION REPORT

| TO:                | Chair and Members Public Works Committee                                                                                          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| COMMITTEE DATE:    | September 19, 2016                                                                                                                |
| SUBJECT/REPORT NO: | Lincoln M. Alexander Parkway and Red Hill Valley Parkway<br>Lighting<br>(PW16077) (City Wide)<br>(Outstanding Business List Item) |
| WARD(S) AFFECTED:  | City Wide                                                                                                                         |
| PREPARED BY:       | Gord McGuire<br>(905) 546-2424, Extension 2439                                                                                    |
|                    | Mike Field<br>(905) 546-2424, Extension 4576                                                                                      |
| SUBMITTED BY:      | Gary Moore, P. Eng Director, Engineering Services Division Public Works Department                                                |
| SIGNATURE:         |                                                                                                                                   |

#### Council Direction:

At its meeting of December 7, 2015 the Public Works Committee directed staff to "report to the Public Works Committee with information on the costs and process of investigating an improved lighting system on the Red Hill Valley Parkway and the Linc."

This direction was in response to the Public Works Committee's review and discussion of the The Lincoln M. Alexander Parkway (LINC) & Red Hill Valley Parkway (RHVP) Safety Review report PW15091.

#### Information:

The Lincoln M. Alexander Parkway (LINC) and Red Hill Valley Parkway (RHVP) were designed and constructed with partial illumination at the exit/entrance ramps and without continuous lighting of the mainline corridors. Lighting at interchanges and cross street overpasses provides additional inadvertent partial illumination in some locations.

The original Environmental Assessments (EA) completed for the LINC and RHVP included a review of lighting. It was identified that through the Red Hill Creek Valley, that lighting would have a detrimental environmental impact and lighting restrictions were imposed. Decisions regarding adding lighting on the LINC and/or RHVP would require renewing and updating the original EAs so that the impacts of lighting could be reexamined. It would be prudent to delay any such EA review so that it may be coupled with other proposed changes such as the widening of the LINC/RHVP to six lanes.

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service, Engaged Employees.

# SUBJECT: Lincoln M. Alexander Parkway and Red Hill Valley Parkway Lighting (PW16077) (City Wide) - Page 2 of 2

Regardless of the removal of lighting restrictions through a renewal of the EA, physical challenges exist which would inhibit the installation of lighting in some locations. The RHVP bridge over the Red Hill creek was constructed without street light pole bases or conduits and adding lighting on this segment will be challenging as the structure would need to be modified to accommodate these elements.

Further constraints include Hydro One distribution over-head wiring which passes over the RHVP and Mud St/Stone Church interchange requires minimum horizontal and vertical clearances to other structures. These requirements essentially prohibit the installation of street light poles in some locations which could result in difficulties for providing adequate illumination for the mainline and ramps in proximity to the utility corridor.

Lastly, both the LINC and RHVP potentially have some sections where there is limited to no available room to install new street light poles which could negatively impact the ability to provide adequate illumination in these areas.

Excluding the above noted challenges, adding continuous lighting to the LINC and/or RHVP will require capital funding. Preliminary, high level estimates indicate that the cost to install lighting would be in the range of \$6M to \$10M depending on many factors. Operationally, the installation of lighting on the LINC/RHVP would result in increased annual operational costs of between \$100k and \$150k. Estimated capital and operating costs do not include enhancing the illumination of the LINC/RHVP exit/entrance ramps which are not currently fully lit. Ramp lighting will add another \$1-2M of capital requirements

The Lincoln M. Alexander Parkway (LINC) & Red Hill Valley Parkway (RHVP) Safety Review report PW15091 briefly discussed the safety benefits associated with continuously lighting the LINC and RHVP. The consultant review included a high-level discussion related to lighting. The high-level review is not comprehensive enough to guide any staff recommendations and in order to fully understand the benefits, risks and challenges of adding continuous lighting, a more fulsome review and business analysis would be required to be undertaken. The approximate cost of such a study would be approximately \$100k.



## **INFORMATION REPORT**

| TO:                | Chair and Members Public Works Committee                                                                                                 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| COMMITTEE DATE:    | October 3, 2016                                                                                                                          |
| SUBJECT/REPORT NO: | Expansion of Redhill Valley Parkway (RHVP) and Lincoln Alexander Parkway (LINC) – (PW16084) (City Wide) (Outstanding Business List Item) |
| WARD(S) AFFECTED:  | City Wide                                                                                                                                |
| PREPARED BY:       | Alan Kirkpatrick<br>(905) 546-2424, Extension 4173                                                                                       |
| SUBMITTED BY:      | John Mater, C.E.T. Director of Corporate Assets & Strategic Planning Public Works Department                                             |
| SIGNATURE:         |                                                                                                                                          |

#### Council Direction:

November 11th, 2015

Expansion of Red Hill Valley Parkway and the Lincoln M. Alexander Parkway

- (a) That staff be directed to report to the Public Works Committee on the total costs and feasibility to expand the Red Hill Valley Parkway and the Lincoln M. Alexander Parkway from the current four to six lanes;
- (b) That the report consider the highway expansion as part of the City's overall Master Transportation Plan; and;
- (c) That subject to subsection (a) and with the future support of Council, the Province of Ontario and the Federal Government is approached to cost share in this capital infrastructure project.

#### Information:

During this review staff from Engineering Services, Traffic Engineering/Operations, Road Operations and Policy and Programs and Finance staff were consulted.

#### Costs and Feasibility

## Feasibility

The Red Hill Valley Parkway (RHVP) and Lincoln M. Alexander Parkway (LINC) could be widened to add an additional lane in each direction throughout the majority of the two highway facilities however there are many factors to consider. Although this widening is feasible, and was considered in the original design, the key problem is the restrictions at

OUR Vision: To be the best place to raise a child and age successfully.
OUR Mission: To provide high quality cost conscious public services that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service, Engaged Employees.

## SUBJECT: Expansion of Redhill Valley Parkway (RHVP) and Lincoln Alexander Parkway (LINC) – (PW16084) (City Wide) - Page 2 of 4

the connection points of the Highway 403 and the Queen Elizabeth Way. These facilities (Hwy 403 and QEW) have congestion levels exceeding capacity for the foreseeable future in the extended peak traffic period for the majority of each weekday which will not solve the reported traffic problems on the RHVP and the LINC. Providing extra lanes on the parkway may relieve some of the congestion in the middle sections of the facility, but the excessive congestion at the highway connection points will not be solved with a widening of this roadway infrastructure.

The traffic problems being experienced and anticipated on Highway 403 and the QEW are the key congestion points in this matter. There may be more traffic lanes on the LINC/RHVP for more vehicles, but the vehicles hoping to access the adjacent regional highway network will experience greater congestion and bottlenecks at these connection points because the highways are congested or the access ramps are limited. These conditions will result in continued and worsening back-ups on the parkway facilities, including slower speeds, longer travel time, delays to access the parkway and longer peak traffic periods. This may also lead to motorists exiting the parkways and utilizing City streets to get around congestion.

In addition, widening of the parkways will increase the potential for speeding/accidents in the non-peak periods. Furthermore, with speeding comes the potential for additional noise and public complaints.

Consideration has been given in the past for a Freeway Traffic Management System (FTMS) to be included on the Parkways. This is similar to the cameras and large changeable message boards the MTO utilizes on area highways. The addition of this system provides motorists with travel information to make trip decisions. If the Parkways are considered for widening, it would be recommended that the FTMS be included at an estimated cost of \$10 million. Integrating this system with the MTO FTMS would be also explored.

It should also be pointed out that at the Niagara escarpment crossing point on the RHVP; the maximum expansion has been constructed; three (3) upbound lanes plus a truck climbing lane and two (2) down bound lanes. No additional lanes can be provided at this point.

In order to widen the LINC portion of this road network an Environmental Assessment (EA) would be required. The timing of an EA for this type of infrastructure could take approximately two (2) years for the notice of study completion to be finalized. Following that there could be potential Part II Orders (appeals) which would extend the completion of the project. The cost of doing an EA of this magnitude could be in the order of approximately \$500,000.

During the EA process different alternatives would need to be reviewed such as high occupancy vehicle (HOV) lanes and road tolling.

# SUBJECT: Expansion of Redhill Valley Parkway (RHVP) and Lincoln Alexander Parkway (LINC) – (PW16084) (City Wide) - Page 3 of 4

The original approval of the EA for the Redhill Valley Parkway allows for the possibility of expansion from the existing four (4) lane facility to six (6) lanes. Aside from the approval, any consideration for widening of the Parkway would require the involvement of the Joint Stewardship Board of the Redhill Valley and a discussion of proposed changes.

In addition to the capital cost to expand the Parkways, operational costs would also increase, i.e. winter control activities, road maintenance. The additional operational costs are estimated to be \$596,000 annually.

Prior to undertaking the process to add lanes to the RHVP and LINC, there are a number of steps that should be considered to mitigate the issues as much as possible before undertaking the time and expense to expand the parkway, including:

| Improvement                                                                         | Implementation                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freeway Traffic Management System (FTMS)                                            | Similar to the MTO Compass System for road performance, conditions and incident detection. Provides motorists with information on conditions ahead.                                                 |
| Ramp metering                                                                       | Controlling the vehicles entering the facility at controlled access points                                                                                                                          |
| Speed enforcement                                                                   | Police presence                                                                                                                                                                                     |
| Improved Transit                                                                    | Reducing the number of vehicles on the road                                                                                                                                                         |
| Smart Commute programs and<br>Transportation Demand Management<br>(TDM) Initiatives | Car Pooling, Ride Sharing, Ride matching, Work-shifting strategies, Telecommuting, After-hours delivery programs – increasing ways to reduce the number of vehicles on the road during peak periods |

## Cost Estimate

The following is a cost estimate range of work in order for infrastructure to be completed.

# SUBJECT: Expansion of Redhill Valley Parkway (RHVP) and Lincoln Alexander Parkway (LINC) – (PW16084) (City Wide) - Page 4 of 4

| Action                                                                                                                      | Redhill Valley Parkway (south side of Redhill Creek bridge at the MTO limit to the north side of the escarpment viaduct bridge) | Lincoln Alexander Parkway<br>(median from Highway 403<br>limit to the end of the urban<br>section east of Upper<br>Ottawa) |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Includes Excavation, Removals, Construction, Traffic Control & protection, Contingency, Engineering Design & Administration | \$16,000,000 - \$23,000,000                                                                                                     | \$25,000,000 - \$38,000,000                                                                                                |
| Estimated annual operational costs for road maintenance and winter control                                                  | \$330,000<br>Note: Does not include<br>street lighting                                                                          | \$267,000<br>Note: Does not include<br>street lighting                                                                     |
| Environmental<br>Assessment<br>(EA)                                                                                         | EA completed                                                                                                                    | \$500,000                                                                                                                  |

In addition to the capital and operating costs associated with expanding the LINC and RHVP, to include the recommended Freeway Traffic Management System (FTMS) on these highway facilities, and integrating it into the Traffic Operations Centre (TOC), the estimated cost would be \$10,000,000

As per the May 20, 2016 Information Update that was prepared for Council, traffic safety improvements for the RHVP and LINC have been initiated and will continue until 2017.

Therefore, expanding the RHVP and LINC is possible at an estimated capital cost range of \$41,000,000 to \$61,000,000 (excluding street lighting) plus the additional estimated annual operational cost of \$597,000. Additional estimated costs of \$10,000,000 for an FTMS and \$500,000 for an EA on the LINC would be added. This capital cost is currently not in the City's Capital Budget and Forecast. Identification of these costs will be made to senior levels of government if City Council wishes to pursue this matter. The additional lanes, one in each direction, may provide some relief in the centre section of the parkway facilities, however, congested end points, connecting to interregional highways, will potentially result in increased congestion and back-ups on the parkway facilities, which is not the intended outcome, particularly during the weekday peak traffic periods. Other improvements/changes might be considered before expanding the parkway facilities, such as the provision of an FTMS, Ramp metering, increased speed enforcement, increase public transit and other TDM measures.



## INFORMATION REPORT

| TO:                | Chair and Members Public Works Committee                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------------------|
| COMMITTEE DATE:    | January 16, 2017                                                                                                     |
| SUBJECT/REPORT NO: | Expansion of RHVP and LINC - Traffic Count Feasibility Study (PW16084a) (City Wide) (Outstanding Business List Item) |
| WARD(S) AFFECTED:  | City Wide                                                                                                            |
| PREPARED BY:       | Rich Shebib (905) 546-2424, Extension 3909                                                                           |
| SUBMITTED BY:      | Gary Moore, P. Eng. Director, Engineering Services Public Works                                                      |
| SIGNATURE:         | 5                                                                                                                    |

#### Council Direction:

At the October 3, 2016 Public Works Committee meeting staff were directed to report back on the Expansion of the Redhill Valley Parkway (RHVP) and the Lincoln Alexander Parkway (PW16084);

- (b) That staff be directed to report back to the Public Works Committee on the feasibility of conducting a detailed traffic study to determine how many cars and commercial vehicles use the Red Hill Valley Parkway (RHVP) and the Lincoln M. Alexander Parkway (LINC) on a daily basis; and,
- (c) That the feasibility study include a way to measure vehicle counts on all onramps and off-ramps to the RHVP and the LINC;

#### Information:

- (a) Corridor Management currently manages a permanent count station on the RHVP and LINC. These stations provide the total volume, vehicle class, and travel speeds on both of these facilities. A report can be prepared on request.
- (b) The cost estimate to conduct Turning Movement Counts at all ramps leading to and from the RHVP and LINC is \$7,000 plus HST funded through the Traffic Count Budget. This study can be completed in the spring of 2017.

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service, Engaged Empowered Employees.



## INFORMATION UPDATE

| TO:                | Mayor and Members of City Council                                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE:              | March 24, 2017                                                                                                                                       |
| SUBJECT/REPORT NO: | The Lincoln M. Alexander Expressway (LINC) and The Red<br>Hill Valley Parkway (RHVP) Safety Improvements<br>(TRANSP1701) (Wards 4, 5, 6, 7, 8 and 9) |
| WARD(S) AFFECTED:  | Wards 4, 5, 6, 7, 8 and 9                                                                                                                            |
| SUBMITTED BY:      | Martin White, C.E.T.<br>Acting Director of Transportation Division<br>Public Works Department                                                        |
| SIGNATURE:         | Matter Water                                                                                                                                         |

At the February 27<sup>th</sup>, 2017 Public Works Committee meeting, staff were requested to provide an update on the short term safety improvements on the Lincoln M. Alexander Expressway (LINC) and the Red Hill Valley Parkway (RHVP) as approved by Council at the December 9<sup>th</sup>, 2015 meeting. The list of identified short term improvements is attached in Appendix "A" which indicates the recommended improvements and status of each improvement. The medium and long term recommended improvements are attached as Appendix "B", which details the recommended improvements and status.

Should you have any questions on this matter, please contact Martin White, Manager of Traffic Operations and Engineering at extension 4345.

## Appendices and Schedules Attached

Appendix A - Short Term Safety Improvements LINC and RHVP

Appendix B – Medium and Long Terms Safety Improvements LINC and RHVP

Copy to:

Chris Murray, City Manager

Dan McKinnon, General Manager, Public Works

Rose Caterini, City Clerk, Corporate Services

Lauri Leduc, Legislative Coordinator, City Clerk, Corporate Services

Mike Zegarac, General Manager, Finance & Corporate Services

Anna Apkarian, Manager of Finance & Administration, Public Works

Andrea McKinney, Director of Communications & Intergovernmental Affairs, City Manager's Office

Jen Recine, Senior Communications Officer, City Manager's Office

Jasmine Graham, Communications Officer, Public Works

Martin White, Manager, Traffic Operations & Engineering, Public Works

David Ferguson, Superintendent of Traffic Engineering

Kim Wyskiel, Superintendent of Traffic Services, Public Works

Kris Jacobson, Superintendent of Traffic Operations, Public Works

Al Kirkpatrick, Manager of Transportation Planning Services, Public Works

OUR Vision: To be the best place to raise a child and age successfully. vide high quality cost conscious public services that contribute to a healthy,

OUR Mission: To provide high quality cost conscious public services that contribute to a healthy, safe and prosperous community, in a sustainable manner.

ÖUR Culture: Collective Ownership, Steadiast Integrity, Courageous Change, Sensational Service, Engaged Empowered Employees.

## Appendix A

Short Term Safety Improvements LINC and RHVP

| Short Term Options (0-2 Years)                                                                                          | Status                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Trim Vegetation on on-ramps, Queenston Rd. and Barton St.                                                               | Completed                                                                  |
| Install Oversized Speed Limit Signs                                                                                     | 70% Completed-<br>remaining works to be<br>completed spring/summer<br>2017 |
| Install "Slippery When Wet" Signs                                                                                       | Completion-<br>Spring/Summer 2017                                          |
| Install "Merge" and "Bridge Ices" Signs                                                                                 | Completion-<br>Spring/Summer 2017                                          |
| Upgrade Guiderail end treatments                                                                                        | Completed                                                                  |
| Install, replace or trim vegetation obscuring signs at Guiderail End Treatments                                         | Completed                                                                  |
| Install Digital Feedback Signs                                                                                          | Tender being released-<br>completion in 2017                               |
| Install Recessed Pavement Markings from<br>Greenhill to QEW                                                             | Works to be completed during resurfacing 2018-<br>2021                     |
| Install Object Marker signs on Guiderail End<br>Treatments                                                              | Completed                                                                  |
| Install Advance Diagrammatic Sign on<br>Rousseaux on-ramp west of Mohawk Road                                           | Completion-<br>Spring/Summer 2017                                          |
| Conduct Speed Study and Consideration of<br>Variable Speed Limit system                                                 | Consultant to be retained in 2017 for study                                |
| Install MTO style " Speed Fine" signs                                                                                   | Completion-<br>Spring/Summer 2017                                          |
| Install Advance sign with Advance Right Lane<br>Exits, Next Lane Exit or Through sign between<br>Hwy 403 and Mohawk Rd. | Completion-<br>Spring/Summer 2017                                          |
| Conduct Study to Install Queue End Warning<br>Systems                                                                   | Consultant to be retained in 2017 for study                                |

OUR Vision: To be the best place to raise a child and age successfully.

OUR Mission: To provide high quality cost conscious public services that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service, Engaged Employees.

# SUBJECT: The Lincoln M. Alexander Expressway (LINC) and The Red Hill Valley Parkway (RHVP) Safety Improvements (TRANSP1701) (Wards 4, 5, 6, 7, 8 and 9) - Page 3 of 3

## Appendix B

## Medium and Long Terms Safety Improvements LINC and RHVP

| Medium Term Options (2-5 Years)                           | Status                                    |
|-----------------------------------------------------------|-------------------------------------------|
| Conduct Pavement Friction Testing                         | Completed                                 |
| Shield Rock Cuts between Upper James and Upper Wellington | To be reviewed by<br>Engineering Services |

| Long Term Options (6+ Years)                                   | Status                                           |
|----------------------------------------------------------------|--------------------------------------------------|
| Provide Shoulder Rumble Strips along entire length of the LINC | To be completed during re-surfacing              |
| Install Median Barrier System on LINC                          | To be reviewed and considered during resurfacing |
| Install Median Barrier System on RHVP                          | To be reviewed and considered during resurfacing |
| Install End to End Illumination                                | To be reviewed by<br>Engineering Services        |

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service, Engaged Employees.

## HAMILTON POLICE SERVICES BOARD

#### - INFORMATION -

DATE:

2017 April 13

REPORT TO:

Chair and Members

Hamilton Police Services Board

FROM:

Eric Girt

Chief of Police

SUBJECT:

Five Year Statistical Analysis of Fatal Collisions in Hamilton

(PSB 17-057)

#### BACKGROUND:

This report was requested by the Board to summarize all Fatal Motor Vehicle Collisions that have taken place within the City of Hamilton, over the past five (5) years and two (2) months. (2012-2016, as well as the first two <math>(2) months of 2017).

This summary analyzes the stated collisions, giving a breakdown of the basic cause and effect and to establish a commonality; if any, that may exist between the action of the drivers and the resulting fatality.

The scope of this report is based on the basic investigative categories available to the Hamilton Police Service, and, as such, is not intended to be a Traffic Engineering Analysis of all factors that may have contributed to said Collisions and resulting fatalities.

The detailed analytical breakdown, including charts and analysis, is contained in the included **Appendix "A"**.

Since 2012, up to and including the first two (2) months of 2017, there have been 83 fatal motor vehicle collisions, in the City of Hamilton, resulting in 90 deaths. Since 2011, up to and including the first two (2) months of 2017, there have been 42 fatal motor vehicle collisions, resulting in 42 deaths on O.P.P. patrolled roadways that are within the boundaries of the City of Hamilton. This totals 125 fatal collisions.

From 2012, up to and including the first two (2) months of 2017, there have been eight (8) fatal motor vehicle collisions on the Lincoln Alexander Expressway (the Linc) and the Red Hill Valley Parkway (RHVP).

Throughout Canada, in 2014 (the most recently available National Statistics) there were 1,667 fatal collisions. Nationally the rate of road fatalities per 100,000 is 5.2, in Ontario that number is 3.5. (Source: Transport Canada, Canadian Motor Vehicle Traffic Collision Statistics 2014, www.tc.gc.ca/media/documents/roadsafety/cmvtcs2014\_eng.pdf). From 2012-2016, in Hamilton, there were 79 fatal collisions resulting in 86 deaths. The five year averages would equate to 15.8 fatal collisions per year resulting in 17.2 deaths. With an approximate population of 536,930 citizens in Hamilton (Source: City of Hamilton, www.hamilton.ca/moving-hamilton/community-profile/census-data-hamilton) this equates to 3.2 deaths per 100,000; lower than both the national and provincial averages.

In conducting this analysis, the Traffic Branch looked at what are commonly referred to as crossover collisions. Crossover collisions occur when a vehicle travelling in one (1) lane of traffic crosses over into the opposing lane of traffic and collide with a vehicle travelling the opposite direction. Due to the opposing forces involved, these types of collisions are often very serious in nature.

It is important to remember that a crossover is a vehicle action, not a contributing factor. The act of the vehicle crossing over may be caused by a contributing factor. Contributing factors are connected to driver behaviour, vehicle actions are the result of driver behaviour.

During the stated time frames there were ten (10) crossovers on HPS patrolled roadways, and six (6) crossovers on OPP patrolled roadways. These crossovers account for 12% of HPS fatal collision types and 14% of OPP fatal collision types. For the Linc/RHVP, during this time frame, there were four (4) crossovers accounting for 50% of fatal collision types on that roadway. It is worth noting that while 50% is indeed a much higher percentage; the numbers examined are much smaller resulting in far greater percentage changes.

From the analysis of fatal collisions occurring on HPS patrolled roadways the three (3) most common contributing factors are driver inattention - 48%, intoxicating substances (alcohol & drugs) - 31%, and speed - 32%. These numbers will add up to more than 100% due to the presence of multiple contributing factors in some collisions. There are also additional contributing factors identified in Appendix "A". It is worth noting that these numbers are separate from the previously discussed crossover numbers. As previously mentioned, a crossover is a vehicle action; not a contributing factor, which is part of driver behaviour.

For collisions on OPP patrolled roadways within Hamilton borders, the three (3) most common contributing factors are also driver inattention - 45%, intoxicating substances (alcohol & drugs) - 9.5%, and speed - 9.5%. There are additional contributing factors which are identified in Appendix "A". When looking at the Linc/RHVP, a similar

trend is apparent with the three (3) most common contributing factors once again being driver inattention - 25%, intoxicating substances (alcohol & drugs) - 25% and speed - 37.5%. Again the numbers relating to the Linc/RHVP are small comparatively and, as such, caution should be exercised in drawing conclusions.

The attached <u>Appendix "A"</u> provides a full breakdown of all the numbers, including analysis and charts to add clarity.

After a review of the past 64 months, (from the beginning of Jan 2012 to the end of Feb 2017), there is no single common factor in all Fatal Motor Vehicle Collisions. However, based on the results of the review we can see; based on the balance of probability, that excessive speed, intoxicating substances (alcohol and drugs) and inattentiveness are the most frequent factors present in fatal collisions.

The Hamilton Police Service continues to work to minimize these factors through a combination of education and enforcement. Education takes place through our school officers, our Media and Corporate Communications office and in partnership with the Hamilton Strategic Road Safety Committee. Where education is not effective, the Hamilton Police Service conducts strategic enforcement to attempt to change driver behaviour and reduce collisions.

Eric Girt

Chief of Police

EG/W. Mason

Attachment: Appendix "A"

cc: Deputy Chief Ken Weatherill, Field Support

Superintendent Will Mason, Support Services

## PSB 17- 057 Appendix "A"



## Five Year Statistical Analysis:

(2012 - 2016 + the first two months of 2017 (Jan & Feb)

Of All Fatal Motor Vehicle Collisions

Occurring within the City of Hamilton

Under the jurisdiction of the Hamilton Police Service

**Conducted by the Support Services Division** 

P.C. W. Johnston #578

**Traffic Office** 

"April 2017"

Support Service

## <u>Index</u>

| Item                                                                                            | Page Number |
|-------------------------------------------------------------------------------------------------|-------------|
| Cover Page                                                                                      | 1           |
| Index                                                                                           | 2           |
| Methodology                                                                                     | 4           |
| Fatality Chart                                                                                  | 5           |
| Contributing Factors Chart                                                                      | . 5         |
| 62 Month Fatality's Pie Graph                                                                   | 7           |
| 62 Month Fatality's/Contributing Factors Pie Graph                                              | . 7         |
| Fatal Collisions per day of the week Graph                                                      | 8           |
| 62 Month Fatal Collisions per Day of the week Pie Graph                                         | . 8         |
| Fatal Collisions per time of the day Graph                                                      | 9           |
| 62 Month Fatal Collisions per Time of the Day Pie<br>Graph                                      | 9           |
| Fatal MVC's per Month of the year Pie Graph                                                     | 10          |
| Fatalities for Previous 60 Years Graph                                                          | 11          |
| Number of Registered MV's in Hamilton                                                           | 11          |
| Ontario Provincial Police Statistical Data                                                      | 12          |
| The "Red Hill & LINC" Evaluation                                                                | 14          |
| The "Red Hill & LINC" Cause & Effect                                                            | 14          |
| Fatality Chart "Red Hill & Linc"                                                                | 15          |
| Fatality Chart "Red Hill & Linc" contributing factors                                           | 15          |
| 62 Month Fatalities Pie Graph                                                                   | 16          |
| 62 Month Fatalities Contributing Factors Pie Graph                                              | 17          |
| 5yr. Day of the week Fatalities Graph                                                           | 18          |
| 5yr. Per Time of Day Fatalities Graph                                                           | 18          |
| 62 Month Fatalities day of the Week Pie Graph                                                   | 19          |
| 62 Month Fatalities Time of Day Pie Graph                                                       | 19          |
| Fatal MVC's on the 'Red Hill & Linc" (8) Per Month of the Year 2012 to 2016 + Jan & Feb of 2017 | - 20        |
|                                                                                                 |             |

Support Service

## Five Year Statistical Analysis.

(2012 – 2016 + the first two months of 2017 (Jan & Feb))

Of All Fatal Motor Vehicle Collisions

Occurring within the City of Hamilton

Under the jurisdiction of

The Hamilton Police Service

## Conducted by:

Support Services Division

Traffic Office

"April 2017"

## Five Year Analysis:

(2012 – 2016 + the first two months of 2017)

Of All Fatal Motor Vehicle Collisions

Occurring within the City of Hamilton

Under the jurisdiction of the Hamilton Police Service.

## Methodology:

In reviewing the stated Collisions the following criteria will be examined, location of collision, type of collision, actions of the offending involved party, if a vehicle "crossover" was part of the collision, external contributing factors, number of deceased persons and the locations of the deceased parties.

This report is intended to give a brief overview of what transpired to cause the collisions and to give an insight into what the extenuating contributing factors that may have been in play to cause a resulting fatality.

The following chart will give a summation of how many motor vehicle collisions occurred in each particular time period.

## Fatality Chart for the last 5+ years.

| Year                                        | # of Fatal<br>MVC's | # of<br>Deceased<br>Parties | Deceased<br>Driver of<br>Veh's. | Deceased<br>Passengers | Deceased<br>Pedestrians | Deceased Cyclist |
|---------------------------------------------|---------------------|-----------------------------|---------------------------------|------------------------|-------------------------|------------------|
| 62 month Total =                            | 83                  | 90                          | 43                              | 15                     | 30                      | 2                |
| Total<br>(2012 to<br>2016 only)             | 79                  | 86                          | 39                              | 15                     | 30                      | 2                |
| 5 year<br>Average<br>(2012 to<br>2016 only) | 16                  | 17                          | 8                               | 3                      | 6                       | 0                |

From figures contained in the stated chart, the average number of Fatal Collisions over the past 5 complete years is 16, resulting in 17 Fatalities.

## Fatality Chart & Contributing Factors for the last 5+ years:

|                                                 |                        |                              |       | More than one                                       | category   | may app     | ly to the | Fatal             | Collisio | n.      |
|-------------------------------------------------|------------------------|------------------------------|-------|-----------------------------------------------------|------------|-------------|-----------|-------------------|----------|---------|
| Year                                            | # of<br>Fatal<br>MVC's | # of<br>Decease<br>d Parties | Speed | Intoxicating<br>Substances<br>(Alcohol &<br>Drugs.) | Cross-over | Inattentive | Unknown   | Med.<br>Condition | Age      | Weather |
| 62<br>month<br>Total<br>=                       | 83                     | -90                          | 27    | 26                                                  | 10         | 40          | 11        | 6                 | 3        | 1       |
| Total<br>(2012<br>to 2016<br>only)              | 79                     | 86                           | 25    | 24                                                  | 8          | 38          | 11        | 6                 | 3        | 1       |
| 5 year<br>Averag<br>e (2012<br>to 2016<br>only) | 16                     | 17                           | 5     | 5                                                   | 2          | 8           | 2         | 1                 | 1        | 0       |

From figures contained in the stated chart, the three most common contributing factors to a Fatal Collision are Speed, Intoxicating Substances and Inattentiveness.

On average (5 yr. period) per year, Speed will be a contributing factor in 5 collisions, Intoxicating Substances will be a contributing factor in 5 Collisions and Inattentiveness will be a factor in 8 Collisions.

It is not surprising that the three contributing factors mentioned above are the root cause of Fatal Motor Vehicle Collisions over the past five years, are again the front runners in the present year of 2017.

### The following charts and graphs are a representation of the specified data:

- Total # of Fatal Collisions from Jan 2012 to Feb 2017: & resulting Fatalities.
- Total # of Fatal Collisions from Jan 2012 to Feb 2017 = 83 and the contributing factors that are associated to or contributed to said collisions.
- Fatal Collisions per day of the week: Jan 2012 to Feb 2017
- The Number of Fatal Collisions per day of the week for the past 62 Months: Jan 2012 to Feb 2017
- Fatal Collisions (83): From Jan 2012 to Feb 2017 per time of day.
- Fatal Collisions (83): the number for each stated time period Jan 2012 to Feb 2017





Support Service





Support Service





Support Service

The following Chart shows the Month of the year when each Fatal M.V.C. (83)... took place, given the time period of 2012 to 2016 + the first two months of 2017 (Jan & Feb).



The two charts contained below are good representations of how Fatal Motor Vehicle Collisions have declined in the City of Hamilton over the past 60 years, even though the number of registered Motor Vehicles within the City of Hamilton has increased dramatically.

## Fatalities For Previous 60 Years



# Number of Registered M.V.'s (Passenger, M/C, Moped, Commercial, Bus & Trailer) in Hamilton for the stated Years (M.T.O..)



## Ontario Provincial Police Collision Data (Fatal Collision):

The Burlington O.P.P. are responsible for patrolling the following Highways within the geographical boundaries of the City of Hamilton, that being the QEW, Highway #403, Highway #8, Highway #6 and Highway #5.

The following Chart depicts how many Fatal Motor Vehicle collisions have occurred on their roadways since January 2011 till the end of Feb 2017, and the resulting Fatalities.

|      | - Dis 18-                | 1 1                       |
|------|--------------------------|---------------------------|
| Year | # of Fatal<br>Collisions | # of<br>Fatal<br>Injuries |
| 2011 | - 8                      | 8                         |
| 2012 | 4                        | 4                         |
| 2013 | 8                        | 8                         |
| 2014 | 5                        | 5                         |
| 2015 | 9                        | 9                         |
| 2016 | 8                        | 8                         |
| 2017 | 2                        | 2                         |

<u>However</u>...the cause and effect per collision was not been broken down by year but has been represented as a collective total for the years 2011 to 2016, and as such are presented below:

Careless

= 16 Fatal Collisions

Medical

= 4 Fatal Collisions

Speed

= 4 Fatal Collisions

Alcohol

= 3 Fatal Collisions

Drug

= 1 Fatal Collision

Pedestrian

= 5 Fatal Collisions

Distraction

= 1 Fatal Collision

Mech. Malfunction

= 2 Fatal Collisions

Crossover

= 6 Fatal Collisions

Total

= 42 Fatal Collisions

In regards to the stated Highways patrolled by the Burlington O.P.P. those being the QEW, Highway #403, Highway #8, Highway #6 and Highway #5 the following numbers of Fatalities have occurred on each Highway.

**QEW** 

= 19 Fatalities

Highway #403

= 9 Fatalities

Highway #8

= 1 Fatality

Highway #6

= 11 Fatalities

Highway #5

= 2 Fatalities

Total Fatalities

= 42 Fatalities

Upon review of the statistics supplied by the O.P.P. Burlington Detachment, it would appear that yet again the three main factors at play with driver behavior are:

Speed (4), Intoxicating Substances (4), and Inattentiveness (17).

## 2011 - 2016 Fatal Stats for Burlington OPP by Month

| Month                    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| # of Fatal<br>Collisions | 5   | 1   | 5   | 1   | 5   | 0   | 4   | 4   | 1   | 7   | 5   | 4   |

## 2011 - 2016 Fatal Stats for Burlington OPP by Day

| Day of the<br>Week       | Sun | Mon | Tue | Wed | Thu | Fri | Sat |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|
| # of Fatal<br>Collisions | 6   | 6   | . 5 | 4   | 7   | 8   | 6   |

### 2011 - 2016 Fatal Stats for Burlington OPP by Hour

| Hours                    | 20:00 | 16:00 | 12:00 | 08:00 | 04:00 | 00:00 |
|--------------------------|-------|-------|-------|-------|-------|-------|
| riouis                   | -     | _     | _     |       | _     | _     |
|                          | 24:00 | 20:00 | 16:00 | 12:00 | 08:00 | 04:00 |
| # of Fatal<br>Collisions | 9     | 12    | 7     | 2     | 6     | 6     |

Support Service

## The Red Hill Valley Parkway & the Lincoln M. Alexander Parkway Evaluation.

Special Analysis of Five Year Fatal Trend on these two Specific Roadways.

#### The Lincoln M. Alexander Parkway: Over View.

- 4 Lane divided expressway opened in 1997
- 90 km/hr. posted speed limit
- Approx. 10km in length
- Connects highway #403 to the Red Hill Valley Parkway.
- Includes six full access interchanges.
- Volume count on stated roadway approx. 81,266 Veh's per day

## The Red Hill Valley Parkway: Over View.

- 4 Lane divided expressway opened in 2007
- 90 km/hr. posted speed limit
- Approx. 7km in length
- Connects the QEW to the Lincoln M. Alexander Parkway
- Includes six full access interchanges.
- Volume count on stated roadway approx. 69,801 Veh's per day

In total these two roadways account for approx. 17 km of roadway that is essential to the economic growth and the sustainability of the City of Hamilton. Over the past five years (2012 to 2016) there have been six fatal motor vehicle collisions and in the first two months of 2017 there have been two fatal motor vehicle collisions, giving a grand total of eight fatal motor vehicle collisions.

#### Cause and Effect of the stated Collisions: (for stated time period)

The following charts break down the most common contributing factors to each fatal collision, and give an overview of the location, type of vehicles involved in the collisions and the number and locations of deceased persons.

The crossover category has been added to pinpoint a contributing factor that <u>may</u> be unique to the stated roadways.

# <u>Fatality Chart & Contributing Factors for the Red Hill Valley Parkway & the Lincoln M. Alexander Parkway.</u>

## For the last 5 years:

| Year                                        | # of Fatal<br>MVC's | # of<br>Deceased<br>Parties | Deceased<br>Driver of<br>Veh's. | Deceased<br>Passengers | Deceased<br>Pedestrians | Deceased<br>Cyclist |
|---------------------------------------------|---------------------|-----------------------------|---------------------------------|------------------------|-------------------------|---------------------|
| 62 month Total =                            | 8                   | 11                          | 7                               | 4                      | 0                       | 0                   |
| Total<br>(2012 to<br>2016 only)             | 6                   | 9                           | 5                               | 4                      | 0                       | 0                   |
| 5 year<br>Average<br>(2012 to<br>2016 only) | 1.2                 | 1.8                         | 1.0                             | 0.8                    | 0                       | 0                   |

From figures contained in the stated chart, the average number of Fatal Collisions over the past 5 complete years is 1.2 collisions resulting in 1.8 Fatalities.

Rounding off the above mentioned numbers we get two Collisions resulting in two fatalities.

# Fatality Chart & Contributing Factors for the Red Hill Valley Parkway & the Lincoln M. Alexander Parkway:

## For the last 5 years:

|                                             |                            | 7                            | More than one category may apply to the Fatal Collision. |                                                     |            |             |          |                   |     |         |
|---------------------------------------------|----------------------------|------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------|-------------|----------|-------------------|-----|---------|
| Year                                        | # of<br>Fatal<br>MVC'<br>s | # of<br>Decease<br>d Parties | Speed                                                    | Intoxicating<br>Substances<br>(Alcohol &<br>Drugs.) | Cross-aver | Inattentive | Urikmown | Med.<br>Condition | Age | Weather |
| 62<br>month<br>Total<br>=                   | 8                          | 11                           | 3                                                        | 2                                                   | 4          | 2           | 2        | 1                 | 0   | 1       |
| Total<br>(2012<br>to 2016<br>only)          | 6                          | 9                            | 2                                                        | 1                                                   | 2          | . 1         | _ 2      | 1                 | 0   | 1       |
| 5 year<br>Avg.<br>(2012<br>to 2016<br>only) | 1.2                        | 1.8                          | 0.4                                                      | 0.2                                                 | 0.4        | 0.2         | 0.4      | 0.2               | 0   | 0.2     |

Support Service

From figures contained in the stated chart, the three most common contributing factors to a Fatal Collision is Speed, Intoxicating Substances and Inattentiveness.

It is not surprising that the three contributing factors mentioned above are the root cause of Fatal Motor Vehicle Collisions over the past five years, are again the front runners in this present year 2017.

<u>Fatality Chart for the Red Hill Valley Parkway & the Lincoln M. Alexander Parkway.</u>

For the last 62 months:



# Fatalities on the "Linc" & "Red Hill" from Jan 2012 to Feb 2017 = 8 And the contributing factors that are associated to or contributed to said collision



- # of Fatal Collisions
- Speed
- Intoxicating Substances
- ☐ Crossover
- Medical
- Inattentivness
- Unknown
- ₩eather





Support Service

18 | Page





The following Chart shows the Month of the year when each Fatal M.V.C. (8)... took place, on the "Red Hill & Linc." given the time period of 2012 to 2016 + the first two months of 2017 (Jan & Feb).





# INFORMATION UPDATE

| TO:                | Mayor and Members of City Council                                      |  |  |  |
|--------------------|------------------------------------------------------------------------|--|--|--|
| DATE:              | May 19, 2017                                                           |  |  |  |
| SUBJECT/REPORT NO: | LINC/RHVP Safety Improvements                                          |  |  |  |
| WARD(S) AFFECTED:  | Wards 4, 5, 6, 7, 8 and 9                                              |  |  |  |
| SUBMITTED BY:      | John Mater Director of Transportation Services Public Works Department |  |  |  |
| SIGNATURE:         |                                                                        |  |  |  |

At the February 27<sup>th</sup>, 2017 Public Works Committee meeting, staff were requested to provide an update on the short term safety improvements as approved by Council at the December 9<sup>th</sup>, 2015 meeting. The list of identified short term improvements is attached in Appendix "A" which indicates the recommended improvements, estimated cost and status of each in initiative. The medium and long term recommended improvements are attached as Appendix "B", which details the recommended improvements, cost and status.

Public Works Committee also requested information regarding the number of fatalities that have occurred since the opening of the Lincoln Alexander Expressway (LINC) in the fall of 1997 and Red Hill Valley Parkway (RHVP) in the fall of 2007. A breakdown of the yearly fatalities can be found in Appendix "C". There have been a total of 6 collisions on the LINC and 4 collisions on the RHVP that resulted in fatalities (data up to December 31, 2016).

Staff also conducted an assessment of traffic volumes on both facilities. Since the opening of the LINC in October 1997 the average volume has increased from approximately 48,000 vehicles per day (vpd) to 85,000 vpd. in 2015 (77% increase). A large part of the increase can be attributed to the opening of the RHVP in 2007 which created a continuous connection from Highway 403 to the QEW. Since the opening of the RHVP in November 2007 the average volume has increased from 49,000 vpd to 57,000 vpd. in 2015 (16% increase).

When reviewing roadways to determine a volume/capacity ratio, multiple considerations are taken into consideration including, operating speed, lane width, number of lanes, facility type, etc. In reviewing the facilities, it is estimated that both roadways operate with a volume/capacity of 2000 vehicles per hour/lane. This would mean that under ideal conditions, the maximum volume that can be handled by the roadways would be in the area of 95,000 to 100,000 vehicles per day.

# SUBJECT: Council Approved LINC/RHVP Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) Page 2 of 5

This would appear to be the case, as both roadways operate efficiently outside of the Peak Period time periods. As a result of the peak period volumes, it is estimated that the v/c ratio is close to 1.0 which would identify a Level of Service D for both roadways. During periods of time not within the Peak Periods, both facilities operate more in a free flow condition, with minimal to no delay. During these time periods, the facilities operate at a level of service A or B.

Should you have any questions, please feel free to contact Martin White, Manager of Traffic Operations and Engineering at extension 4345.

Copy to:

Chris Murray, City Manager
Dan McKinnon, General Manager, Public Works
Rose Caterini, City Clerk, General Manager's Office
Lauri Leduc, Legislative Coordinator, General Manager's Office
Mike Zegarac, General Manager, Finance & Corporate Services
Anna Apkarian, Manager of Finance & Administration, Public Works
Andrea McKinney, Director of Communications & Intergovernmental Affairs, City
Manager's Office
Jen Recine, Senior Communications Officer, City Manager's Office
Jasmine Graham, Communications Officer, Public Works
John Mater, Director of Transportation Management, Public Works
David Ferguson, Superintendent of Traffic Engineering

# SUBJECT: Council Approved LINC/RHVP Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) Page 3 of 5

Appendix A

|                                                                                                                   |                     | Appendix A                                                                 |
|-------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|
| Short Term Options (0-2 Years)                                                                                    | Estimated Cost (\$) | Status                                                                     |
| Trim Vegetation on on-ramps, Queenston Rd. and Barton St.                                                         | \$3,000             | Completed                                                                  |
| Install Oversized Speed Limit Signs                                                                               | \$7,000             | 70% Completed-<br>remaining works to be<br>completed<br>spring/summer 2017 |
| Install "Slippery When Wet" Signs                                                                                 | \$8,000             | Completion-<br>Spring/Summer 2017                                          |
| Install "Merge" and "Bridge Ices" Signs                                                                           | \$3,000             | Completion-<br>Spring/Summer 2017                                          |
| Upgrade Guiderail end treatments                                                                                  | \$70,000            | Completed                                                                  |
| Install, replace or trim vegetation obscuring signs at Guiderail End Treatments                                   | \$3,500             | Completed                                                                  |
| Install Digital Feedback Signs                                                                                    | \$100,000           | Tender being released-<br>completion in 2017                               |
| Install Recessed Pavement Markings from<br>Greenhill to QEW                                                       | \$247,000           | Works to be completed during resurfacing 2018- 2021                        |
| Install Object Marker signs on Guiderail End<br>Treatments                                                        | \$3,500             | Completed                                                                  |
| Install Advance Diagrammatic Sign on Rousseaux on-ramp west of Mohawk Road                                        | \$3,000             | Completion-<br>Spring/Summer 2017                                          |
| Conduct Speed Study and Consideration of<br>Variable Speed Limit system                                           | \$40,000            | Consultant to be retained in 2017 for study                                |
| Install MTO style "Speed Fine" signs                                                                              | \$10,000            | Completion-<br>Spring/Summer 2017                                          |
| Install Advance sign with Advance Right Lane Exits, Next Lane Exit or Through sign between Hwy 403 and Mohawk Rd. | \$4,000             | Completion-<br>Spring/Summer 2017                                          |
| Conduct Study to Install Queue End Warning<br>Systems                                                             | \$40,000            | Consultant to be retained in 2017 for study                                |
| Total Cost                                                                                                        | \$542,000           |                                                                            |
| Total Cost with 25% Contingency                                                                                   | \$677,500           | ,                                                                          |

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

# SUBJECT: Council Approved LINC/RHVP Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) Page 4 of 5

## Appendix B

| Medium Term Options (2-5 Years)                           | Estimated Cost \$ | Status                                    |
|-----------------------------------------------------------|-------------------|-------------------------------------------|
| Conduct Pavement Friction Testing                         | \$40,000          | Completed                                 |
| Shield Rock Cuts between Upper James and Upper Wellington | \$241,590         | To be reviewed by<br>Engineering Services |
| Total Cost                                                | \$281,590         |                                           |
| Total Cost with 25% Contingency                           | \$351,988         |                                           |

| Long Term Options (6+ Years)                                   | Estimated Costs \$ | Status                                                |
|----------------------------------------------------------------|--------------------|-------------------------------------------------------|
| Provide Shoulder Rumble Strips along entire length of the LINC | \$105,000          | To be completed during re-surfacing                   |
| Install Median Barrier System on LINC                          | \$5,569,000        | To be reviewed and considered during re-<br>surfacing |
| Install Median Barrier System on RHVP                          | \$2,528,400        | To be reviewed and considered during resurfacing      |
| Install End to End Illumination                                | \$810,000          | To be reviewed by<br>Engineering Services             |
| Total Cost                                                     | \$9,012,400        | -                                                     |
| Total Cost with 25% Contingency                                | \$11,265,500       | ·                                                     |

OUR Vision: To be the best place in Canada to raise a child, promote innovation, engage citizens and provide diverse economic opportunities.

OUR Mission: WE provide quality public service that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Values: Accountability, Cost Consciousness, Equity, Excellence, Honesty, Innovation, Leadership, Respect and Teamwork

# SUBJECT: Council Approved LINC/RHVP Safety Improvements (Wards 4, 5, 6, 7, 8 and 9) Page 5 of 5

## Fatal collisions on the LINC

| Year | Number of Fatal Collisions |  |  |  |
|------|----------------------------|--|--|--|
| 1997 | 0                          |  |  |  |
| 1998 | 0                          |  |  |  |
| 1999 | 1                          |  |  |  |
| 2000 | 0                          |  |  |  |
| 2001 | 0                          |  |  |  |
| 2002 | . 0                        |  |  |  |
| 2003 | 0                          |  |  |  |
| 2004 | 0                          |  |  |  |
| 2005 | 2                          |  |  |  |
| 2006 | 0                          |  |  |  |
| 2007 | 0                          |  |  |  |
| 2008 | 0                          |  |  |  |
| 2009 | 1                          |  |  |  |
| 2010 | 0                          |  |  |  |
| 2011 | 0                          |  |  |  |
| 2012 | . 1                        |  |  |  |
| 2013 | 0                          |  |  |  |
| 2014 | 1                          |  |  |  |
| 2015 | 0                          |  |  |  |
| 2016 | 0                          |  |  |  |

Appendix C Fatal collisions on RHVP

| Year | Number of Fatal Collisions |
|------|----------------------------|
| 2007 | 0                          |
| 2008 | 1                          |
| 2009 | 0                          |
| 2010 | 0                          |
| 2011 | 0                          |
| 2012 | 1                          |
| 2013 | 0                          |
| 2014 | 0                          |
| 2015 | 2                          |
| 2016 | 0                          |



HAM0064440\_0001 RHV0001045



HAM0064440\_0001 RHV0001045

#### SCHEDULE "B"

Documents that are or were in the corporation's possession, control or power that it objects to producing on the grounds of privilege.

(a) **Solicitor-Client Privilege:** Documents containing confidential professional communications passing between the defendant, or the defendant's agent and the defendant's legal advisers directly related to the seeking or receiving of legal advice or legal assistance.

All correspondence and communications between Legal Services Division and other divisions within the municipal corporation of the City of Hamilton. The said documents consist of professional communications of a confidential nature passing between the corporation's solicitors and its agents in anticipation of or during the progress of actual litigation, for the purposes of asking for and receiving legal advice or for the dominant purpose of aiding in the conduct of actual or anticipated litigation, which litigation was reasonably contemplated at the time of making of the said documents. (Solicitor and Client Privilege)

(b) **Litigation Privilege:** Documents comprised of notes, memoranda, reports, confidential correspondence, and copies thereof, prepared for the purposes of obtaining or providing advice concerning this litigation, of obtaining or providing information and evidence to be used in this litigation and preparing for and prosecuting this litigation.

| No. | <u>Date</u>       | <u>Document</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <u>Sender</u> | Recipient      | No. of |
|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----------------|--------|
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |                | Pages  |
| 1.  | December 23,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with | Adam Tollis,  | Diana Sabados, | 4      |
| 1   | 2015              | attachments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Cunningham,   | Risk           | 4      |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Lindsey       | Management     | 9      |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -200 |               | Services       |        |
| 2.  | February 25, 2016 | The same of the sa | with | Adam Tollis,  | Diana Sabados, | 5      |
|     |                   | attachments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Cunningham,   | Risk           |        |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Lindsey       | Management     |        |
|     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               | Services       |        |
| 3.  | April 8, 2016     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with | Adam Tollis,  | Diana Sabados, | 4      |
|     |                   | attachments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *    | Cunningham,   | Risk           | ,      |
|     | *                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Lindsey       | Management     |        |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               | Services       |        |
| 4.  | June 8, 2016      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with | Adam Tollis,  | Diana Sabados, | 4      |
|     |                   | attachments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Cunningham,   | Risk           |        |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Lindsey       | Management     |        |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               | Services       |        |
| 5.  | July 18, 2016     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with | Adam Tollis,  | Diana Sabados, | 4      |
|     | į.                | attachments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Cunningham,   | Risk           |        |
|     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Lindsey       | Management     |        |

|    |                  |                       |                                        | Services                                         |   |
|----|------------------|-----------------------|----------------------------------------|--------------------------------------------------|---|
| 6. | January 10, 2017 | Report #6 attachments | Adam Tollis,<br>Cunningham,<br>Lindsey | Diana Sabados,<br>Risk<br>Management<br>Services | 4 |
| 7. | June 29, 2017    | Report #7 attachments | Adam Tollis,<br>Cunningham,<br>Lindsey | Diana Sabados,<br>Risk<br>Management<br>Services | 5 |
| 8. | August 4, 2017   | Report #8 attachments | Adam Tollis,<br>Cunningham,<br>Lindsey | Diana Sabados,<br>Risk<br>Management<br>Services | 4 |
| 9. | October 27, 2017 | Report #9 attachments | Adam Tollis,<br>Cunningham,<br>Lindsey | Diana Sabados,<br>Risk<br>Management<br>Services | 3 |

<sup>(</sup>c) Without Prejudice Communication Privilege: Documents containing or reflecting communications of a without prejudice nature concerning the matters in issue in this litigation.

## SCHEDULE "C"

Documents that were formerly in the corporation's possession, control or power, but are no longer in its possession, control or power.

None.

٧.

CITY OF HAMILTON et. al. Defendant

Court File No.: 17-61728

**ONTARIO** 

SUPERIOR COURT OF JUSTICE

Proceeding commenced at HAMILTON

### **AFFIDAVIT OF DOCUMENTS**

### **CITY OF HAMILTON**

Legal Services Division 21 King Street West, 12<sup>th</sup> Floor Hamilton, Ontario L8P 4W7

### DANA-ELISABETA LEZAU

LSUC No.: 52306D

Tel: (905) 546-2424 Ext. 4216

Fax: (905) 546-4370

Lawyers for the Defendant, City of Hamilton

This is **Exhibit "F**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits



Byrdena M. MacNeil, Solicitor Legal Services Division, City Manager's Office Office Address: 21 King Street West, 12<sup>th</sup> Floor Hamilton, Ontario, L8P 4W7 Phone: 905-546-2424, ext. 4637 Fax: 905-546-4370 Email: bmacneil@hamilton.ca

Legal Services Division

Date: December 4, 2018

To: File

From: Byrdena M. MacNeil, Solicitor

Legal Services Division

Subject: Voicemail of Gord McGuire – Dec. 4, 2018 @ 2:34 PM

Re: FOI 18-189 - RHVP

Byrdena hi, it's Gord McGuire. Uh I apologize for dominating your time. I had a conversation with Dan McKinnon about the copying those records and he asked me to send a message and copy him as well. So we just want to make sure that there's clarity around what happened there. Um technically I did send you that note or that letter about that one truck asking for more records so sort of an interesting parallel. And lastly, I'm not sure if we talked about this yesterday but the supplier of the material to build the Red Hill was Dufferin and at the time my understanding was Councillor Ferguson was their General Manager so. That was in 2007 or so prior to him becoming a Councillor. Just in case that has any relevance, I thought I'd bring it up. Alright thanks bye.

This is **Exhibit "G**" referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits

- \* solicitor-client/legal advice privilege attaches to documents that are confidential communications passing between a client, or an expert retained on behalf of a client, and the client's lawyers, where the communications were made in the course of obtaining or providing legal advice, and the lawyers were acting in a professional capacity as lawyers
- \* litigation privilege attaches to documents that were created or came into existence for the substantial purpose of assisting a party or its lawyers in the conduct of pending or reasonably anticipated litigation

SOLICITOR-CLIENT PRIVILEGED & CONFIDENTIAL

Dear CIMA:

### Re: Red Hill Valley Parkway

We are the lawyers for the City of Hamilton ("the City") in this matter. We confirm that this communication is strictly privileged and confidential in nature and must not be distributed any further without the express permission and consent of the City Solicitor.

The City Solicitor's office is undertaking an investigation that is being conducted for the purpose of obtaining and giving legal advice, and to obtain information for pending or anticipated litigation.

We confirm that the City has retained you for the purposes of preparing an engineering report regarding the condition of the sidewalk at the location of the Plaintiff's fall.

As part of that work, the City now requests that you review and consider the enclosed report prepared by Tradewind Scientific Ltd., entitled "Friction Testing Survey Summary Report – Lincoln Alexander & Red Hill Valley Parkways (Hamilton) (January 2014) ("the Tradewind Report"). The Tradewind Report was prepared for Golder Associates Ltd. a consultant retained by the City to complete a Performance Review after Six Years in Service of the Red Hill Valley Parkway.

Please note the following terms and conditions with regards to the City's disclosure to you of the Tradewind Report:

- a. The Tradewind Report is provided to you *only* as part of this retainer which is protected by solicitor-client privilege and litigation privilege.
- b. Any other use, disclosure, reproduction and/or distribution of the Tradewind Report, for public dissemination, commercial, or any other purpose or use, is strictly prohibited.
- c. The City of Hamilton reserves all of its rights, including but not limited to intellectual property and copyright in the Tradewind Report.

d. The City of Hamilton reserves its rights to commence any action, litigation and/or civil prosecution for non-compliance with the herein terms and conditions.

As you may know, the City will be resurfacing the RHVP in June 2019.

We request that you report back to the City Solicitor with a written report addressing the following:

- 1. Your expert findings, opinions and conclusions on whether there are any remediation measures that should be taken by the City to address any safety concerns that may exist with the Red Hill Valley Parkway ("the RHVP") between now and the Summer of 2019 when the RHVP will be resurfaced.
- 2. Your guidance concerning whether or not possible further inquiries, investigations and testing are advisable.

This is **Exhibit "H"** referred to in the Affidavit of **Byrdena MacNeil** sworn this 15th day of March, 2023

A Commissioner for Taking Affidavits



# Memorandum

Legal Services Division

Date: December 18, 2018

To: Gord McGuire

From: Pam Delry

Legal Assistant to Byrdena MacNeil

Subject: FOI 18-189 - RHVP

Further to Byrdena's email to you dated December 16<sup>th</sup>, 2018, please find attached the copy of the documents corresponding to the Index that have been highlighted, so that you will be able to review and consider same.

Thank you.

Pamela Delry Legal Assistant Legal and Risk Management Services, Corporate Services City of Hamilton

Phone: 905-546-2424 ext. 3981

/ptd